import torch import cv2 from transformers import DPTFeatureExtractor, DPTForDepthEstimation extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") model.eval() def estimate_depth(frame_paths): depth_maps = [] for path in frame_paths: image = cv2.imread(path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) inputs = extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) depth = outputs.predicted_depth[0].cpu().numpy() depth_maps.append(depth) return depth_maps