Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,119 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
# Resize while maintaining aspect ratio
|
| 22 |
-
image = image_raw.resize(
|
| 23 |
-
(800, int(800 * image_raw.size[1] / image_raw.size[0])),
|
| 24 |
-
Image.Resampling.LANCZOS
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
encoding = feature_extractor(image, return_tensors="pt")
|
| 28 |
-
|
| 29 |
-
with torch.no_grad():
|
| 30 |
-
outputs = model(**encoding)
|
| 31 |
-
predicted_depth = outputs.predicted_depth
|
| 32 |
-
|
| 33 |
-
# Normalize depth image
|
| 34 |
-
prediction = torch.nn.functional.interpolate(
|
| 35 |
-
predicted_depth.unsqueeze(1),
|
| 36 |
-
size=image.size[::-1],
|
| 37 |
-
mode="bicubic",
|
| 38 |
-
align_corners=False,
|
| 39 |
-
).squeeze()
|
| 40 |
-
output = prediction.cpu().numpy()
|
| 41 |
-
|
| 42 |
-
if np.max(output) > 0:
|
| 43 |
-
depth_image = (output * 255 / np.max(output)).astype('uint8')
|
| 44 |
-
else:
|
| 45 |
-
depth_image = np.zeros_like(output, dtype='uint8') # Handle empty output
|
| 46 |
-
|
| 47 |
-
glb_path = create_3d_obj(np.array(image), depth_image, image_path)
|
| 48 |
-
|
| 49 |
-
if glb_path and Path(glb_path).exists():
|
| 50 |
-
return Image.fromarray(depth_image), glb_path, glb_path
|
| 51 |
-
else:
|
| 52 |
-
return Image.fromarray(depth_image), None, "3D model generation failed"
|
| 53 |
-
|
| 54 |
-
def create_3d_obj(rgb_image, depth_image, image_path):
|
| 55 |
-
try:
|
| 56 |
-
depth_o3d = o3d.geometry.Image(depth_image)
|
| 57 |
-
image_o3d = o3d.geometry.Image(rgb_image)
|
| 58 |
-
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
| 59 |
-
image_o3d, depth_o3d, convert_rgb_to_intensity=False)
|
| 60 |
-
|
| 61 |
-
w, h = depth_image.shape[1], depth_image.shape[0]
|
| 62 |
-
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
| 63 |
-
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)
|
| 64 |
-
|
| 65 |
-
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
|
| 66 |
-
pcd.estimate_normals(
|
| 67 |
-
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
|
| 68 |
-
pcd.orient_normals_towards_camera_location(camera_location=np.array([0., 0., 1000.]))
|
| 69 |
-
|
| 70 |
-
mesh_raw, _ = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
|
| 71 |
-
pcd, depth=10, width=0, scale=1.1, linear_fit=True)
|
| 72 |
-
|
| 73 |
-
if not mesh_raw.has_triangles():
|
| 74 |
-
print("Mesh generation failed: No triangles in mesh")
|
| 75 |
-
return None # Mesh generation failed
|
| 76 |
-
|
| 77 |
-
# Center the mesh for better preview
|
| 78 |
-
bbox = pcd.get_axis_aligned_bounding_box()
|
| 79 |
-
mesh_raw.translate(-bbox.get_center())
|
| 80 |
-
|
| 81 |
-
# Save the 3D model as .gltf
|
| 82 |
-
gltf_path = str(Path.cwd() / f"{image_path.stem}.gltf")
|
| 83 |
-
o3d.io.write_triangle_mesh(gltf_path, mesh_raw, write_triangle_uvs=True)
|
| 84 |
-
|
| 85 |
-
# Convert .gltf to .glb
|
| 86 |
-
glb_path = gltf_path.replace(".gltf", ".glb")
|
| 87 |
-
subprocess.run(["npx", "gltf-pipeline", "-i", gltf_path, "-o", glb_path])
|
| 88 |
-
|
| 89 |
-
if Path(glb_path).exists():
|
| 90 |
-
return glb_path
|
| 91 |
-
else:
|
| 92 |
-
print("GLB conversion failed.")
|
| 93 |
-
return None
|
| 94 |
-
|
| 95 |
-
except Exception as e:
|
| 96 |
-
print(f"3D model generation failed: {e}")
|
| 97 |
-
return None
|
| 98 |
-
|
| 99 |
-
title = "Zero-shot Depth Estimation with DPT + 3D Model Preview"
|
| 100 |
-
description = "Upload an image to generate a depth map and reconstruct a 3D model in .glb format."
|
| 101 |
-
|
| 102 |
-
with gr.Blocks() as demo:
|
| 103 |
-
gr.Markdown(f"## {title}")
|
| 104 |
-
gr.Markdown(description)
|
| 105 |
-
|
| 106 |
-
with gr.Row():
|
| 107 |
-
with gr.Column(scale=1):
|
| 108 |
-
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 109 |
-
generate_button = gr.Button("Generate 3D Model")
|
| 110 |
-
|
| 111 |
-
with gr.Column(scale=2):
|
| 112 |
-
depth_output = gr.Image(label="Predicted Depth", type="pil")
|
| 113 |
-
model_output = gr.Model3D(label="3D Model Preview (GLB)")
|
| 114 |
-
file_output = gr.File(label="Download 3D GLB File")
|
| 115 |
-
|
| 116 |
-
generate_button.click(fn=process_image, inputs=[image_input], outputs=[depth_output, model_output, file_output])
|
| 117 |
|
| 118 |
if __name__ == "__main__":
|
| 119 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def load_mesh(mesh_file_name):
|
| 5 |
+
return mesh_file_name
|
| 6 |
+
|
| 7 |
+
demo = gr.Interface(
|
| 8 |
+
fn=load_mesh,
|
| 9 |
+
inputs=gr.Model3D(),
|
| 10 |
+
outputs=gr.Model3D(
|
| 11 |
+
clear_color=(0.0, 0.0, 0.0, 0.0), label="3D Model", display_mode="wireframe"),
|
| 12 |
+
examples=[
|
| 13 |
+
[os.path.join(os.path.dirname(__file__), "files/model1.glb")],
|
| 14 |
+
[os.path.join(os.path.dirname(__file__), "files/model2.glb")],
|
| 15 |
+
[os.path.join(os.path.dirname(__file__), "files/model3.glb")],
|
| 16 |
+
[os.path.join(os.path.dirname(__file__), "files/model4.glb")],
|
| 17 |
+
["https://huggingface.co/datasets/dylanebert/3dgs/resolve/main/bonsai/bonsai-7k-mini.splat"],
|
| 18 |
+
],
|
| 19 |
+
cache_examples=True
|
| 20 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
if __name__ == "__main__":
|
| 23 |
demo.launch()
|