import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import torch st.set_page_config(page_title="TinyLlama Chatbot") @st.cache_resource def load_model(): model_name = "TinyLlama/TinyLlama-1.1B-chat-v1.0" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) model.eval() return tokenizer, model st.title("Turbo Chatbot♑") user_input = st.text_input("Ask a question") if user_input: with st.spinner("Generating response..."): tokenizer, model = load_model() prompt = f"""<|system|> You are a helpful AI assistant. <|user|> {user_input} <|assistant|> """ input_ids = tokenizer(prompt, return_tensors="pt").input_ids with torch.no_grad(): output = model.generate( input_ids, max_new_tokens=120, temperature=0.6, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id ) decoded = tokenizer.decode(output[0], skip_special_tokens=True) response = decoded.split("<|assistant|>")[-1].strip() st.subheader("Response") st.write(response)