words2csv / olm_ocr.py
snake11235's picture
feat: refactor model configuration to use unified MODELS_MAP with backend routing
9e38f34
import os
import time
from typing import Optional
from PIL import Image
from huggingface_hub import InferenceClient
from image_utils import _pil_image_to_base64_jpeg
from logging_helper import _log_model_response
from common import MODELS_MAP
MODEL_ID = "allenai/olmOCR-2-7B-1025-FP8"
HF_ENDPOINT_URL = "https://wsy54j97qbvg7mua.us-east-1.aws.endpoints.huggingface.cloud"
def _build_messages(image_base64: str, prompt: str):
return [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},
},
],
}
]
def _run_olmocr(image: Image.Image, prompt: str) -> str:
image_base64 = _pil_image_to_base64_jpeg(image)
messages = _build_messages(image_base64, prompt)
hf_token: Optional[str] = os.getenv("HF_TOKEN")
client = InferenceClient(
base_url=HF_ENDPOINT_URL,
token=hf_token,
)
start_time = time.perf_counter()
completion = client.chat.completions.create(
model=MODEL_ID,
messages=messages,
max_tokens=512,
temperature=0.1,
)
duration = time.perf_counter() - start_time
content = str(completion.choices[0].message.content)
_log_model_response(
model_name=MODEL_ID,
content=content,
duration=duration,
usage=completion.usage,
pricing=MODELS_MAP,
)
return content