File size: 1,746 Bytes
4ae3e44
 
 
 
 
 
a8f90b0
 
9e38f34
4ae3e44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8f90b0
4ae3e44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8f90b0
 
 
 
 
 
9e38f34
a8f90b0
 
4ae3e44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import base64
import time
from io import BytesIO
from typing import Optional
from PIL import Image
from logging_helper import log as _log, log_debug as _log_debug, _log_model_response
from image_utils import _pil_image_to_base64_jpeg
from common import MODELS_MAP

try:
    from openai import OpenAI
except ImportError:  # pragma: no cover
    OpenAI = None  # type: ignore

def _run_openai_vision(image: Image.Image, prompt: str, model_name: str) -> str:
    if OpenAI is None:
        raise RuntimeError("openai package is not installed. Please install it to use ChatGPT 5.2 backend.")

    api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        raise RuntimeError("OPENAI_API_KEY environment variable is not set.")

    client = OpenAI(api_key=api_key)

    img_b64 = _pil_image_to_base64_jpeg(image)

    _log_debug(f"Using OpenAI model: {model_name}")
    _log_debug(f"Input image size: {image.size}")

    start_time = time.perf_counter()

    response = client.chat.completions.create(
        model=model_name,
        messages=[
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt},
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{img_b64}"},
                    },
                ],
            }
        ],
        max_completion_tokens=4048,
    )

    duration = time.perf_counter() - start_time

    content = response.choices[0].message.content or ""

    _log_model_response(
        model_name=model_name,
        content=content,
        duration=duration,
        usage=response.usage,
        pricing=MODELS_MAP,
    )

    return content