Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,208 +3,322 @@ import fitz # PyMuPDF
|
|
| 3 |
import re
|
| 4 |
import faiss
|
| 5 |
import numpy as np
|
| 6 |
-
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from transformers import pipeline
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# =================================================
|
| 12 |
# MODEL LOADING (ONCE)
|
|
|
|
| 13 |
# =================================================
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
model
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
model
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
# =================================================
|
| 34 |
-
# PDF PROCESSING
|
| 35 |
# =================================================
|
| 36 |
|
| 37 |
def extract_text_from_pdf(pdf_path):
|
|
|
|
| 38 |
doc = fitz.open(pdf_path)
|
| 39 |
text = ""
|
| 40 |
for page in doc:
|
| 41 |
-
text += page.get_text()
|
| 42 |
return text
|
| 43 |
|
| 44 |
|
| 45 |
def clean_text(text):
|
|
|
|
|
|
|
| 46 |
text = re.sub(r"\s+", " ", text)
|
| 47 |
-
|
| 48 |
-
text = re.sub(r"
|
|
|
|
| 49 |
return text.strip()
|
| 50 |
|
| 51 |
|
| 52 |
-
def chunk_text(text, chunk_size=
|
|
|
|
| 53 |
chunks = []
|
| 54 |
start = 0
|
| 55 |
while start < len(text):
|
| 56 |
end = start + chunk_size
|
| 57 |
chunks.append(text[start:end])
|
| 58 |
-
start = end - overlap
|
| 59 |
return chunks
|
| 60 |
|
| 61 |
|
| 62 |
-
def chunk_text_for_summary(text, chunk_size=
|
|
|
|
| 63 |
chunks = []
|
| 64 |
start = 0
|
| 65 |
while start < len(text):
|
| 66 |
end = start + chunk_size
|
| 67 |
chunks.append(text[start:end])
|
| 68 |
-
start = end - overlap
|
| 69 |
return chunks
|
| 70 |
|
| 71 |
|
| 72 |
# =================================================
|
| 73 |
-
#
|
| 74 |
# =================================================
|
| 75 |
|
| 76 |
def build_faiss_index(chunks):
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
embeddings = np.array(embeddings).astype("float32")
|
|
|
|
|
|
|
| 79 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 80 |
index.add(embeddings)
|
|
|
|
| 81 |
return index, chunks
|
| 82 |
|
| 83 |
|
| 84 |
def retrieve_relevant_chunks(question, index, chunks, top_k=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
query_embedding = embedding_model.encode([question]).astype("float32")
|
|
|
|
|
|
|
| 86 |
distances, indices = index.search(query_embedding, top_k)
|
| 87 |
|
| 88 |
results = []
|
| 89 |
for i, idx in enumerate(indices[0]):
|
|
|
|
| 90 |
results.append((chunks[idx], distances[0][i]))
|
| 91 |
|
|
|
|
| 92 |
results.sort(key=lambda x: x[1])
|
| 93 |
return [r[0] for r in results]
|
| 94 |
|
| 95 |
|
| 96 |
# =================================================
|
| 97 |
-
#
|
| 98 |
-
# =================================================
|
| 99 |
-
|
| 100 |
-
def generate_answer(question, context_chunks):
|
| 101 |
-
best_answer = ""
|
| 102 |
-
best_score = 0.0
|
| 103 |
-
|
| 104 |
-
for chunk in context_chunks:
|
| 105 |
-
result = qa_pipeline(
|
| 106 |
-
question=question,
|
| 107 |
-
context=chunk
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
if result["score"] > best_score:
|
| 111 |
-
best_score = result["score"]
|
| 112 |
-
best_answer = result["answer"]
|
| 113 |
-
|
| 114 |
-
if best_score < 0.3 or best_answer.strip() == "":
|
| 115 |
-
return "Information not found in the document."
|
| 116 |
-
|
| 117 |
-
return best_answer
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# =================================================
|
| 121 |
-
# SUMMARIZATION
|
| 122 |
-
# =================================================
|
| 123 |
-
|
| 124 |
-
def generate_summary(chunks):
|
| 125 |
-
summaries = []
|
| 126 |
-
|
| 127 |
-
for chunk in chunks:
|
| 128 |
-
summary = summarizer(
|
| 129 |
-
chunk,
|
| 130 |
-
max_length=150,
|
| 131 |
-
min_length=60,
|
| 132 |
-
do_sample=False
|
| 133 |
-
)[0]["summary_text"]
|
| 134 |
-
|
| 135 |
-
summaries.append(summary)
|
| 136 |
-
|
| 137 |
-
return " ".join(summaries)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# =================================================
|
| 141 |
-
# MAIN FUNCTIONS
|
| 142 |
# =================================================
|
| 143 |
|
| 144 |
-
def
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
chunks = chunk_text(text)
|
| 152 |
-
index, chunks = build_faiss_index(chunks)
|
| 153 |
-
|
| 154 |
-
relevant_chunks = retrieve_relevant_chunks(question, index, chunks)
|
| 155 |
-
return generate_answer(question, relevant_chunks)
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
|
|
|
| 159 |
if pdf_file is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
return "Please upload a PDF document."
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
|
| 169 |
# =================================================
|
| 170 |
-
# GRADIO UI
|
| 171 |
# =================================================
|
| 172 |
|
| 173 |
with gr.Blocks() as demo:
|
| 174 |
|
| 175 |
gr.Markdown("""
|
| 176 |
-
# π
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
|
|
|
|
|
|
|
| 185 |
with gr.Row():
|
| 186 |
with gr.Column(scale=1):
|
| 187 |
-
pdf_input = gr.File(label="π€ Upload PDF", file_types=[".pdf"])
|
| 188 |
-
|
| 189 |
question_input = gr.Textbox(
|
| 190 |
-
label="β Ask a
|
| 191 |
-
placeholder="e.g.
|
| 192 |
lines=2
|
| 193 |
)
|
|
|
|
| 194 |
|
| 195 |
-
|
| 196 |
-
summary_btn = gr.Button("π Generate Summary")
|
| 197 |
|
| 198 |
-
|
| 199 |
-
output_box = gr.Textbox(label="π Output", lines=12)
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
|
|
|
| 203 |
|
| 204 |
gr.Markdown("""
|
| 205 |
---
|
| 206 |
-
|
| 207 |
-
**NIELIT Ropar | AIML Six Months Training | 2026**
|
| 208 |
""")
|
| 209 |
|
| 210 |
-
|
|
|
|
|
|
| 3 |
import re
|
| 4 |
import faiss
|
| 5 |
import numpy as np
|
| 6 |
+
import time
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from transformers import pipeline
|
| 9 |
|
| 10 |
+
# --- Global State and Initialization ---
|
| 11 |
+
# These variables will hold the processed document data
|
| 12 |
+
qa_index = None
|
| 13 |
+
qa_chunks = []
|
| 14 |
+
summarizer_chunks = []
|
| 15 |
+
is_initialized = False
|
| 16 |
|
| 17 |
# =================================================
|
| 18 |
# MODEL LOADING (ONCE)
|
| 19 |
+
# WARNING: This step is the primary cause of slow startup.
|
| 20 |
# =================================================
|
| 21 |
|
| 22 |
+
try:
|
| 23 |
+
# Embedding model for semantic retrieval
|
| 24 |
+
print("Loading Sentence Transformer model...")
|
| 25 |
+
embedding_model = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1")
|
| 26 |
+
|
| 27 |
+
# Extractive QA model (accurate answers)
|
| 28 |
+
print("Loading Extractive QA model...")
|
| 29 |
+
qa_pipeline = pipeline(
|
| 30 |
+
"question-answering",
|
| 31 |
+
model="deepset/roberta-base-squad2",
|
| 32 |
+
tokenizer="deepset/roberta-base-squad2"
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Summarization model (clean summary)
|
| 36 |
+
print("Loading Summarization model...")
|
| 37 |
+
summarizer = pipeline(
|
| 38 |
+
"summarization",
|
| 39 |
+
model="facebook/bart-large-cnn",
|
| 40 |
+
tokenizer="facebook/bart-large-cnn"
|
| 41 |
+
)
|
| 42 |
+
is_initialized = True
|
| 43 |
+
print("All models loaded successfully.")
|
| 44 |
+
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"ERROR: Failed to load required models. Please check dependencies (requirements.txt). Error: {e}")
|
| 47 |
+
# Set initialized to False so functions return an error message
|
| 48 |
+
is_initialized = False
|
| 49 |
|
| 50 |
|
| 51 |
# =================================================
|
| 52 |
+
# PDF PROCESSING UTILITIES
|
| 53 |
# =================================================
|
| 54 |
|
| 55 |
def extract_text_from_pdf(pdf_path):
|
| 56 |
+
"""Extracts raw text content from a PDF file using PyMuPDF."""
|
| 57 |
doc = fitz.open(pdf_path)
|
| 58 |
text = ""
|
| 59 |
for page in doc:
|
| 60 |
+
text += page.get_text() + "\n\n"
|
| 61 |
return text
|
| 62 |
|
| 63 |
|
| 64 |
def clean_text(text):
|
| 65 |
+
"""Performs common cleanup on raw PDF text."""
|
| 66 |
+
# Remove excessive whitespace
|
| 67 |
text = re.sub(r"\s+", " ", text)
|
| 68 |
+
# Attempt to remove table of contents, headers, footers (often document-specific)
|
| 69 |
+
text = re.sub(r"Table of Contents.*?Introduction", "", text, flags=re.I | re.DOTALL)
|
| 70 |
+
text = re.sub(r"\bPage \d+ of \d+\b|\bPage \d+\b", "", text)
|
| 71 |
return text.strip()
|
| 72 |
|
| 73 |
|
| 74 |
+
def chunk_text(text, chunk_size=400, overlap=100):
|
| 75 |
+
"""Chunks text for QA retrieval (smaller chunks for better context focus)."""
|
| 76 |
chunks = []
|
| 77 |
start = 0
|
| 78 |
while start < len(text):
|
| 79 |
end = start + chunk_size
|
| 80 |
chunks.append(text[start:end])
|
| 81 |
+
start = end - overlap if end < len(text) else len(text)
|
| 82 |
return chunks
|
| 83 |
|
| 84 |
|
| 85 |
+
def chunk_text_for_summary(text, chunk_size=1024, overlap=150):
|
| 86 |
+
"""Chunks text for summarization (larger chunks to maintain context flow)."""
|
| 87 |
chunks = []
|
| 88 |
start = 0
|
| 89 |
while start < len(text):
|
| 90 |
end = start + chunk_size
|
| 91 |
chunks.append(text[start:end])
|
| 92 |
+
start = end - overlap if end < len(text) else len(text)
|
| 93 |
return chunks
|
| 94 |
|
| 95 |
|
| 96 |
# =================================================
|
| 97 |
+
# FAISS AND CONTEXT RETRIEVAL
|
| 98 |
# =================================================
|
| 99 |
|
| 100 |
def build_faiss_index(chunks):
|
| 101 |
+
"""Builds a FAISS Index from text chunks."""
|
| 102 |
+
print(f"Encoding {len(chunks)} chunks...")
|
| 103 |
+
embeddings = embedding_model.encode(chunks, show_progress_bar=False)
|
| 104 |
embeddings = np.array(embeddings).astype("float32")
|
| 105 |
+
|
| 106 |
+
# Initialize FAISS Index (L2 distance for 'multi-qa-MiniLM-L6-cos-v1')
|
| 107 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 108 |
index.add(embeddings)
|
| 109 |
+
print("FAISS Index built.")
|
| 110 |
return index, chunks
|
| 111 |
|
| 112 |
|
| 113 |
def retrieve_relevant_chunks(question, index, chunks, top_k=5):
|
| 114 |
+
"""Retrieves the most relevant chunks for a given question."""
|
| 115 |
+
# Ensure FAISS index is ready
|
| 116 |
+
if index is None:
|
| 117 |
+
return []
|
| 118 |
+
|
| 119 |
+
# Encode the query
|
| 120 |
query_embedding = embedding_model.encode([question]).astype("float32")
|
| 121 |
+
|
| 122 |
+
# Search the index
|
| 123 |
distances, indices = index.search(query_embedding, top_k)
|
| 124 |
|
| 125 |
results = []
|
| 126 |
for i, idx in enumerate(indices[0]):
|
| 127 |
+
# Higher score (smaller distance) is better in L2
|
| 128 |
results.append((chunks[idx], distances[0][i]))
|
| 129 |
|
| 130 |
+
# Sort by distance (smallest distance first)
|
| 131 |
results.sort(key=lambda x: x[1])
|
| 132 |
return [r[0] for r in results]
|
| 133 |
|
| 134 |
|
| 135 |
# =================================================
|
| 136 |
+
# HANDLERS FOR GRADIO INPUT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
# =================================================
|
| 138 |
|
| 139 |
+
def process_pdf(pdf_file):
|
| 140 |
+
"""
|
| 141 |
+
Initial PDF processing step: extracts text, cleans it, chunks it,
|
| 142 |
+
and builds the FAISS index for retrieval. Updates global state.
|
| 143 |
+
"""
|
| 144 |
+
global qa_index, qa_chunks, summarizer_chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
if not is_initialized:
|
| 147 |
+
return "ERROR: AI models failed to load. Please check console for details."
|
| 148 |
+
|
| 149 |
if pdf_file is None:
|
| 150 |
+
# Clear state if no file is provided
|
| 151 |
+
qa_index = None
|
| 152 |
+
qa_chunks = []
|
| 153 |
+
summarizer_chunks = []
|
| 154 |
return "Please upload a PDF document."
|
| 155 |
|
| 156 |
+
try:
|
| 157 |
+
start_time = time.time()
|
| 158 |
+
print("Starting PDF processing...")
|
| 159 |
+
|
| 160 |
+
# 1. Extraction and Cleaning
|
| 161 |
+
raw_text = extract_text_from_pdf(pdf_file.name)
|
| 162 |
+
cleaned_text = clean_text(raw_text)
|
| 163 |
+
|
| 164 |
+
# 2. Chunking for QA and Summary
|
| 165 |
+
qa_chunks = chunk_text(cleaned_text)
|
| 166 |
+
# Summarizer chunks might be larger to keep sequential context
|
| 167 |
+
summarizer_chunks = chunk_text_for_summary(cleaned_text)
|
| 168 |
+
|
| 169 |
+
# 3. Building FAISS Index for QA
|
| 170 |
+
qa_index, qa_chunks = build_faiss_index(qa_chunks)
|
| 171 |
+
|
| 172 |
+
end_time = time.time()
|
| 173 |
+
|
| 174 |
+
return (f"Document successfully processed and indexed! "
|
| 175 |
+
f"Total chunks: {len(qa_chunks)}. "
|
| 176 |
+
f"Ready for Q&A and Summary. (Processing time: {end_time - start_time:.2f} seconds)")
|
| 177 |
+
|
| 178 |
+
except Exception as e:
|
| 179 |
+
return f"An error occurred during PDF processing: {e}"
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def get_answer(question):
|
| 183 |
+
"""Handles the Question Answering functionality."""
|
| 184 |
+
if not is_initialized:
|
| 185 |
+
return "ERROR: AI models failed to load. Cannot answer questions."
|
| 186 |
+
|
| 187 |
+
if qa_index is None:
|
| 188 |
+
return "Please upload and process a document first."
|
| 189 |
+
|
| 190 |
+
if not question or question.strip() == "":
|
| 191 |
+
return "Please enter a question to get an answer."
|
| 192 |
+
|
| 193 |
+
try:
|
| 194 |
+
start_time = time.time()
|
| 195 |
+
# 1. Retrieval (RAG component)
|
| 196 |
+
relevant_chunks = retrieve_relevant_chunks(question, qa_index, qa_chunks)
|
| 197 |
+
|
| 198 |
+
# Combine the retrieved chunks into a single context
|
| 199 |
+
context = " ".join(relevant_chunks)
|
| 200 |
+
|
| 201 |
+
# 2. Generation (Extractive QA component)
|
| 202 |
+
# Pass the question and the combined, relevant context to the QA model
|
| 203 |
+
result = qa_pipeline(
|
| 204 |
+
question=question,
|
| 205 |
+
context=context,
|
| 206 |
+
# Set minimum answer length to avoid single-word outputs
|
| 207 |
+
max_answer_len=256,
|
| 208 |
+
)
|
| 209 |
|
| 210 |
+
answer = result["answer"]
|
| 211 |
+
score = result["score"]
|
| 212 |
+
|
| 213 |
+
# Set a confidence threshold for a valid answer
|
| 214 |
+
if score < 0.4 or answer.strip() == "":
|
| 215 |
+
return "Information not found in the most relevant sections of the document (confidence too low)."
|
| 216 |
+
|
| 217 |
+
end_time = time.time()
|
| 218 |
+
return (f"Answer: {answer}\n\n"
|
| 219 |
+
f"Confidence Score: {score:.2f}\n"
|
| 220 |
+
f"Time taken: {end_time - start_time:.2f} seconds")
|
| 221 |
+
|
| 222 |
+
except Exception as e:
|
| 223 |
+
return f"An error occurred during Q&A generation: {e}"
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def get_summary():
|
| 227 |
+
"""Handles the Summarization functionality."""
|
| 228 |
+
if not is_initialized:
|
| 229 |
+
return "ERROR: AI models failed to load. Cannot generate summary."
|
| 230 |
+
|
| 231 |
+
if not summarizer_chunks:
|
| 232 |
+
return "Please upload and process a document first."
|
| 233 |
+
|
| 234 |
+
try:
|
| 235 |
+
start_time = time.time()
|
| 236 |
+
summaries = []
|
| 237 |
+
|
| 238 |
+
# Summarize each chunk sequentially
|
| 239 |
+
for i, chunk in enumerate(summarizer_chunks):
|
| 240 |
+
print(f"Summarizing chunk {i+1}/{len(summarizer_chunks)}")
|
| 241 |
+
summary_output = summarizer(
|
| 242 |
+
chunk,
|
| 243 |
+
max_length=150,
|
| 244 |
+
min_length=50,
|
| 245 |
+
do_sample=False,
|
| 246 |
+
truncation=True # Crucial to handle inputs slightly over the model's max length
|
| 247 |
+
)[0]["summary_text"]
|
| 248 |
+
summaries.append(summary_output)
|
| 249 |
+
|
| 250 |
+
# Join the sequential summaries and run a final merge summary
|
| 251 |
+
merged_summary_text = " ".join(summaries)
|
| 252 |
+
|
| 253 |
+
# If the merged summary is still too long, run a final summary pass
|
| 254 |
+
if len(merged_summary_text) > 1024:
|
| 255 |
+
print("Running final merge summary...")
|
| 256 |
+
final_summary_output = summarizer(
|
| 257 |
+
merged_summary_text,
|
| 258 |
+
max_length=400,
|
| 259 |
+
min_length=150,
|
| 260 |
+
do_sample=False,
|
| 261 |
+
truncation=True
|
| 262 |
+
)[0]["summary_text"]
|
| 263 |
+
else:
|
| 264 |
+
final_summary_output = merged_summary_text
|
| 265 |
+
|
| 266 |
+
end_time = time.time()
|
| 267 |
+
return (f"--- Document Summary ---\n\n{final_summary_output}\n\n"
|
| 268 |
+
f"Time taken: {end_time - start_time:.2f} seconds")
|
| 269 |
+
|
| 270 |
+
except Exception as e:
|
| 271 |
+
return f"An error occurred during summarization: {e}"
|
| 272 |
|
| 273 |
|
| 274 |
# =================================================
|
| 275 |
+
# GRADIO UI
|
| 276 |
# =================================================
|
| 277 |
|
| 278 |
with gr.Blocks() as demo:
|
| 279 |
|
| 280 |
gr.Markdown("""
|
| 281 |
+
# π Open-Source RAG Document Analysis System (Python/Gradio)
|
| 282 |
+
|
| 283 |
+
This system uses three best-in-class open-source models for **Retrieval-Augmented Generation (RAG)**:
|
| 284 |
+
1. **`multi-qa-MiniLM-L6-cos-v1`**: for fast, accurate context retrieval.
|
| 285 |
+
2. **`deepset/roberta-base-squad2`**: for highly accurate, extractive Question Answering.
|
| 286 |
+
3. **`facebook/bart-large-cnn`**: for multi-step, high-quality Summarization.
|
| 287 |
+
|
| 288 |
+
β οΈ **Warning**: Initial model loading is very slow. Please be patient after the app starts.
|
| 289 |
+
""")
|
| 290 |
|
| 291 |
+
with gr.Row():
|
| 292 |
+
pdf_input = gr.File(label="π€ Upload PDF Document", file_types=[".pdf"])
|
| 293 |
+
process_status = gr.Textbox(label="Processing Status", interactive=False, value="Upload a PDF to begin.")
|
| 294 |
|
| 295 |
+
process_btn = gr.Button("1. Process & Index Document", variant="primary")
|
| 296 |
+
process_btn.click(process_pdf, [pdf_input], process_status)
|
| 297 |
|
| 298 |
+
gr.Markdown("---")
|
| 299 |
+
|
| 300 |
with gr.Row():
|
| 301 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
| 302 |
question_input = gr.Textbox(
|
| 303 |
+
label="β Step 2: Ask a Question",
|
| 304 |
+
placeholder="e.g. What were the Q4 revenue figures?",
|
| 305 |
lines=2
|
| 306 |
)
|
| 307 |
+
qa_btn = gr.Button("π Get Accurate Answer", variant="secondary")
|
| 308 |
|
| 309 |
+
with gr.Column(scale=1):
|
| 310 |
+
summary_btn = gr.Button("π Step 2: Generate Full Summary", variant="secondary")
|
| 311 |
|
| 312 |
+
output_box = gr.Textbox(label="π Output / Result", lines=10, interactive=False)
|
|
|
|
| 313 |
|
| 314 |
+
# Bind events
|
| 315 |
+
qa_btn.click(get_answer, [question_input], output_box)
|
| 316 |
+
summary_btn.click(get_summary, [], output_box)
|
| 317 |
|
| 318 |
gr.Markdown("""
|
| 319 |
---
|
| 320 |
+
*Disclaimer: Due to the size of the models, expect longer processing times for Q&A and Summarization than API-based solutions.*
|
|
|
|
| 321 |
""")
|
| 322 |
|
| 323 |
+
# To run the Gradio application, you would typically call:
|
| 324 |
+
# demo.launch()
|