Spaces:
Sleeping
Sleeping
update sentiment scores
Browse files
app.py
CHANGED
|
@@ -11,15 +11,27 @@ model_name = "tabularisai/multilingual-sentiment-analysis"
|
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
|
|
|
| 16 |
"""
|
| 17 |
-
Predict sentiment for a list of texts
|
| 18 |
"""
|
| 19 |
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 20 |
with torch.no_grad():
|
| 21 |
outputs = model(**inputs)
|
|
|
|
| 22 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
|
|
|
|
|
|
| 23 |
sentiment_map = {
|
| 24 |
0: "Very Negative",
|
| 25 |
1: "Negative",
|
|
@@ -27,7 +39,17 @@ def predict_sentiment(texts):
|
|
| 27 |
3: "Positive",
|
| 28 |
4: "Very Positive"
|
| 29 |
}
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def process_single_sheet(df, product_name):
|
|
@@ -38,23 +60,25 @@ def process_single_sheet(df, product_name):
|
|
| 38 |
raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")
|
| 39 |
|
| 40 |
reviews = df['Reviews'].fillna("")
|
| 41 |
-
sentiments =
|
|
|
|
| 42 |
df['Sentiment'] = sentiments
|
|
|
|
| 43 |
|
| 44 |
# Calculate sentiment distribution
|
| 45 |
sentiment_counts = pd.Series(sentiments).value_counts()
|
|
|
|
| 46 |
|
| 47 |
-
return df, sentiment_counts
|
| 48 |
|
| 49 |
|
| 50 |
-
def create_comparison_charts(sentiment_results):
|
| 51 |
"""
|
| 52 |
-
Create investment-focused comparison charts
|
| 53 |
"""
|
| 54 |
# Prepare data for plotting
|
| 55 |
plot_data = []
|
| 56 |
for product, sentiment_counts in sentiment_results.items():
|
| 57 |
-
# Convert to dictionary and get sum
|
| 58 |
sentiment_dict = sentiment_counts.to_dict()
|
| 59 |
total = sum(sentiment_dict.values())
|
| 60 |
|
|
@@ -69,8 +93,9 @@ def create_comparison_charts(sentiment_results):
|
|
| 69 |
|
| 70 |
df = pd.DataFrame(plot_data)
|
| 71 |
|
| 72 |
-
# Ensure all sentiment columns exist
|
| 73 |
-
|
|
|
|
| 74 |
if sentiment not in df.columns:
|
| 75 |
df[sentiment] = 0
|
| 76 |
|
|
@@ -83,28 +108,26 @@ def create_comparison_charts(sentiment_results):
|
|
| 83 |
'Very Positive': 100
|
| 84 |
}
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
df.loc[df['Product'] == product, 'Sentiment Score'] = round(score, 2)
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
title='
|
| 105 |
-
yaxis_title='
|
| 106 |
-
|
| 107 |
-
showlegend=False
|
| 108 |
)
|
| 109 |
|
| 110 |
# Calculate Positive-Negative Ratios
|
|
@@ -131,24 +154,87 @@ def create_comparison_charts(sentiment_results):
|
|
| 131 |
yaxis_title='Percentage (%)'
|
| 132 |
)
|
| 133 |
|
| 134 |
-
# Create summary
|
| 135 |
-
|
| 136 |
-
'Product': df['Product'],
|
| 137 |
-
'Total Reviews': df['Total Reviews'],
|
| 138 |
-
'
|
| 139 |
-
'
|
| 140 |
-
'
|
| 141 |
-
'
|
| 142 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
#
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
#
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
return
|
| 152 |
|
| 153 |
|
| 154 |
def process_file(file_obj):
|
|
@@ -158,109 +244,56 @@ def process_file(file_obj):
|
|
| 158 |
try:
|
| 159 |
file_path = file_obj.name
|
| 160 |
sentiment_results = defaultdict(pd.Series)
|
|
|
|
| 161 |
all_processed_dfs = {}
|
| 162 |
|
| 163 |
if file_path.endswith('.csv'):
|
| 164 |
df = pd.read_csv(file_path)
|
| 165 |
product_name = "Product" # Default name for CSV
|
| 166 |
-
processed_df, sentiment_counts = process_single_sheet(df, product_name)
|
| 167 |
all_processed_dfs[product_name] = processed_df
|
| 168 |
sentiment_results[product_name] = sentiment_counts
|
|
|
|
| 169 |
|
| 170 |
elif file_path.endswith(('.xlsx', '.xls')):
|
| 171 |
excel_file = pd.ExcelFile(file_path)
|
| 172 |
for sheet_name in excel_file.sheet_names:
|
| 173 |
df = pd.read_excel(file_path, sheet_name=sheet_name)
|
| 174 |
-
processed_df, sentiment_counts = process_single_sheet(df, sheet_name)
|
| 175 |
all_processed_dfs[sheet_name] = processed_df
|
| 176 |
sentiment_results[sheet_name] = sentiment_counts
|
|
|
|
| 177 |
else:
|
| 178 |
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
|
| 179 |
|
| 180 |
-
# Create visualizations
|
| 181 |
-
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# Save results
|
| 184 |
output_path = "sentiment_analysis_results.xlsx"
|
| 185 |
with pd.ExcelWriter(output_path) as writer:
|
| 186 |
for sheet_name, df in all_processed_dfs.items():
|
| 187 |
df.to_excel(writer, sheet_name=sheet_name, index=False)
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
return (
|
| 191 |
-
distribution_plot,
|
| 192 |
-
summary_table,
|
| 193 |
-
output_path
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
except Exception as e:
|
| 197 |
-
raise gr.Error(str(e))
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
# Create Gradio interface
|
| 201 |
-
# In the Gradio interface section
|
| 202 |
-
def create_comparison_charts(sentiment_results):
|
| 203 |
-
"""
|
| 204 |
-
Create simplified, investment-focused comparison charts
|
| 205 |
-
"""
|
| 206 |
-
# Prepare data
|
| 207 |
-
plot_data = []
|
| 208 |
-
for product, sentiment_counts in sentiment_results.items():
|
| 209 |
-
sentiment_dict = sentiment_counts.to_dict()
|
| 210 |
-
total = sum(sentiment_dict.values())
|
| 211 |
-
|
| 212 |
-
row = {
|
| 213 |
-
'Product': product,
|
| 214 |
-
'Total Reviews': total
|
| 215 |
-
}
|
| 216 |
-
for sentiment, count in sentiment_dict.items():
|
| 217 |
-
row[sentiment] = (count / total) * 100
|
| 218 |
-
plot_data.append(row)
|
| 219 |
-
|
| 220 |
-
df = pd.DataFrame(plot_data)
|
| 221 |
-
|
| 222 |
-
# Ensure all sentiment columns exist
|
| 223 |
-
for sentiment in ['Very Negative', 'Negative', 'Neutral', 'Positive', 'Very Positive']:
|
| 224 |
-
if sentiment not in df.columns:
|
| 225 |
-
df[sentiment] = 0
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
for sentiment, color in zip(sentiments, colors):
|
| 235 |
-
stack_fig.add_trace(go.Bar(
|
| 236 |
-
name=sentiment,
|
| 237 |
-
x=df['Product'],
|
| 238 |
-
y=df[sentiment],
|
| 239 |
-
marker_color=color
|
| 240 |
-
))
|
| 241 |
-
|
| 242 |
-
stack_fig.update_layout(
|
| 243 |
-
barmode='stack',
|
| 244 |
-
title='Sentiment Distribution by Product',
|
| 245 |
-
yaxis_title='Percentage (%)'
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
# 2. Aggregated Sentiment Ratios for Quick Comparison
|
| 249 |
-
df['Positive_Total'] = df[['Positive', 'Very Positive']].sum(axis=1)
|
| 250 |
-
df['Negative_Total'] = df[['Negative', 'Very Negative']].sum(axis=1)
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
'Positive (%)': df['Positive_Total'].round(2),
|
| 256 |
-
'Neutral (%)': df['Neutral'].round(2),
|
| 257 |
-
'Negative (%)': df['Negative_Total'].round(2)
|
| 258 |
-
})
|
| 259 |
|
| 260 |
-
|
| 261 |
-
summary_df = summary_df.sort_values('Positive (%)', ascending=False)
|
| 262 |
|
| 263 |
-
|
|
|
|
| 264 |
|
| 265 |
|
| 266 |
# Update the Gradio interface
|
|
@@ -289,6 +322,9 @@ with gr.Blocks() as interface:
|
|
| 289 |
with gr.Row():
|
| 290 |
analyze_btn = gr.Button("Analyze Sentiments")
|
| 291 |
|
|
|
|
|
|
|
|
|
|
| 292 |
with gr.Row():
|
| 293 |
distribution_plot = gr.Plot(label="Sentiment Distribution")
|
| 294 |
|
|
@@ -301,8 +337,8 @@ with gr.Blocks() as interface:
|
|
| 301 |
analyze_btn.click(
|
| 302 |
fn=process_file,
|
| 303 |
inputs=[file_input],
|
| 304 |
-
outputs=[distribution_plot, summary_table, output_file]
|
| 305 |
)
|
| 306 |
|
| 307 |
-
#
|
| 308 |
-
interface.launch()
|
|
|
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 13 |
|
| 14 |
+
# Define sentiment weights for score calculation
|
| 15 |
+
SENTIMENT_WEIGHTS = {
|
| 16 |
+
0: 0.0, # Very Negative
|
| 17 |
+
1: 0.25, # Negative
|
| 18 |
+
2: 0.5, # Neutral
|
| 19 |
+
3: 0.75, # Positive
|
| 20 |
+
4: 1.0 # Very Positive
|
| 21 |
+
}
|
| 22 |
|
| 23 |
+
|
| 24 |
+
def predict_sentiment_with_scores(texts):
|
| 25 |
"""
|
| 26 |
+
Predict sentiment for a list of texts and return both class labels and sentiment scores
|
| 27 |
"""
|
| 28 |
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 29 |
with torch.no_grad():
|
| 30 |
outputs = model(**inputs)
|
| 31 |
+
|
| 32 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 33 |
+
|
| 34 |
+
# Get predicted classes
|
| 35 |
sentiment_map = {
|
| 36 |
0: "Very Negative",
|
| 37 |
1: "Negative",
|
|
|
|
| 39 |
3: "Positive",
|
| 40 |
4: "Very Positive"
|
| 41 |
}
|
| 42 |
+
predicted_classes = [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
|
| 43 |
+
|
| 44 |
+
# Calculate sentiment scores (0-100)
|
| 45 |
+
sentiment_scores = []
|
| 46 |
+
for prob in probabilities:
|
| 47 |
+
# Weighted sum of probabilities
|
| 48 |
+
score = sum(prob[i].item() * SENTIMENT_WEIGHTS[i] for i in range(len(prob)))
|
| 49 |
+
# Scale to 0-100
|
| 50 |
+
sentiment_scores.append(round(score * 100, 2))
|
| 51 |
+
|
| 52 |
+
return predicted_classes, sentiment_scores
|
| 53 |
|
| 54 |
|
| 55 |
def process_single_sheet(df, product_name):
|
|
|
|
| 60 |
raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")
|
| 61 |
|
| 62 |
reviews = df['Reviews'].fillna("")
|
| 63 |
+
sentiments, scores = predict_sentiment_with_scores(reviews.tolist())
|
| 64 |
+
|
| 65 |
df['Sentiment'] = sentiments
|
| 66 |
+
df['Sentiment_Score'] = scores
|
| 67 |
|
| 68 |
# Calculate sentiment distribution
|
| 69 |
sentiment_counts = pd.Series(sentiments).value_counts()
|
| 70 |
+
avg_sentiment_score = round(sum(scores) / len(scores), 2)
|
| 71 |
|
| 72 |
+
return df, sentiment_counts, avg_sentiment_score
|
| 73 |
|
| 74 |
|
| 75 |
+
def create_comparison_charts(sentiment_results, avg_scores):
|
| 76 |
"""
|
| 77 |
+
Create investment-focused comparison charts including the new sentiment score visualization
|
| 78 |
"""
|
| 79 |
# Prepare data for plotting
|
| 80 |
plot_data = []
|
| 81 |
for product, sentiment_counts in sentiment_results.items():
|
|
|
|
| 82 |
sentiment_dict = sentiment_counts.to_dict()
|
| 83 |
total = sum(sentiment_dict.values())
|
| 84 |
|
|
|
|
| 93 |
|
| 94 |
df = pd.DataFrame(plot_data)
|
| 95 |
|
| 96 |
+
# Ensure all sentiment columns exist in the correct order
|
| 97 |
+
sentiments = ['Very Positive', 'Positive', 'Neutral', 'Negative', 'Very Negative']
|
| 98 |
+
for sentiment in sentiments:
|
| 99 |
if sentiment not in df.columns:
|
| 100 |
df[sentiment] = 0
|
| 101 |
|
|
|
|
| 108 |
'Very Positive': 100
|
| 109 |
}
|
| 110 |
|
| 111 |
+
# Create stacked bar chart for sentiment distribution
|
| 112 |
+
distribution_fig = go.Figure()
|
| 113 |
+
sentiments = ['Very Positive', 'Positive', 'Neutral', 'Negative', 'Very Negative']
|
| 114 |
+
colors = ['rgb(39, 174, 96)', 'rgb(46, 204, 113)',
|
| 115 |
+
'rgb(241, 196, 15)', 'rgb(231, 76, 60)',
|
| 116 |
+
'rgb(192, 57, 43)']
|
|
|
|
| 117 |
|
| 118 |
+
for sentiment, color in zip(sentiments, colors):
|
| 119 |
+
distribution_fig.add_trace(go.Bar(
|
| 120 |
+
name=sentiment,
|
| 121 |
+
x=df['Product'],
|
| 122 |
+
y=df[sentiment],
|
| 123 |
+
marker_color=color
|
| 124 |
+
))
|
| 125 |
+
|
| 126 |
+
distribution_fig.update_layout(
|
| 127 |
+
barmode='stack',
|
| 128 |
+
title='Sentiment Distribution by Product',
|
| 129 |
+
yaxis_title='Percentage (%)',
|
| 130 |
+
showlegend=True
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
# Calculate Positive-Negative Ratios
|
|
|
|
| 154 |
yaxis_title='Percentage (%)'
|
| 155 |
)
|
| 156 |
|
| 157 |
+
# Create summary DataFrame
|
| 158 |
+
summary_data = {
|
| 159 |
+
'Product': df['Product'].tolist(),
|
| 160 |
+
'Total Reviews': df['Total Reviews'].tolist(),
|
| 161 |
+
'Positive Ratio (%)': df['Positive Ratio'].round(2).tolist(),
|
| 162 |
+
'Negative Ratio (%)': df['Negative Ratio'].round(2).tolist(),
|
| 163 |
+
'Neutral Ratio (%)': df['Neutral'].round(2).tolist(),
|
| 164 |
+
'Weighted Sentiment Score': [avg_scores[prod] for prod in df['Product']]
|
| 165 |
+
}
|
| 166 |
+
summary_df = pd.DataFrame(summary_data)
|
| 167 |
+
|
| 168 |
+
# Create sentiment score chart
|
| 169 |
+
score_comparison_fig = go.Figure()
|
| 170 |
+
score_comparison_fig.add_trace(go.Bar(
|
| 171 |
+
x=summary_df['Product'],
|
| 172 |
+
y=summary_df['Weighted Sentiment Score'],
|
| 173 |
+
text=[f"{score:.1f}" for score in summary_df['Weighted Sentiment Score']],
|
| 174 |
+
textposition='auto',
|
| 175 |
+
marker_color='rgb(65, 105, 225)',
|
| 176 |
+
name='Sentiment Score'
|
| 177 |
+
))
|
| 178 |
+
score_comparison_fig.update_layout(
|
| 179 |
+
title='Weighted Sentiment Scores by Product (0-100)',
|
| 180 |
+
yaxis_title='Sentiment Score',
|
| 181 |
+
yaxis_range=[0, 100],
|
| 182 |
+
showlegend=False,
|
| 183 |
+
bargap=0.3,
|
| 184 |
+
plot_bgcolor='white'
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
return score_comparison_fig, distribution_fig, ratio_fig, summary_df
|
| 188 |
+
|
| 189 |
+
products = list(avg_scores.keys())
|
| 190 |
+
scores = list(avg_scores.values())
|
| 191 |
|
| 192 |
+
# Add bars for sentiment scores
|
| 193 |
+
score_comparison_fig.add_trace(go.Bar(
|
| 194 |
+
x=products,
|
| 195 |
+
y=scores,
|
| 196 |
+
text=[f"{score:.1f}" for score in scores],
|
| 197 |
+
textposition='auto',
|
| 198 |
+
marker_color='rgb(65, 105, 225)',
|
| 199 |
+
name='Sentiment Score'
|
| 200 |
+
))
|
| 201 |
|
| 202 |
+
# Update layout with appropriate styling
|
| 203 |
+
score_comparison_fig.update_layout(
|
| 204 |
+
title='Weighted Sentiment Scores by Product (0-100)',
|
| 205 |
+
yaxis_title='Sentiment Score',
|
| 206 |
+
yaxis_range=[0, 100],
|
| 207 |
+
showlegend=False,
|
| 208 |
+
bargap=0.3,
|
| 209 |
+
plot_bgcolor='white'
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# Add score to summary DataFrame
|
| 213 |
+
summary_df['Weighted Sentiment Score'] = [avg_scores[prod] for prod in summary_df['Product']]
|
| 214 |
+
|
| 215 |
+
# Create sentiment distribution stacked bar chart
|
| 216 |
+
distribution_fig = go.Figure()
|
| 217 |
+
colors = ['rgb(39, 174, 96)', 'rgb(46, 204, 113)',
|
| 218 |
+
'rgb(241, 196, 15)', 'rgb(231, 76, 60)',
|
| 219 |
+
'rgb(192, 57, 43)']
|
| 220 |
+
|
| 221 |
+
# Add traces for each sentiment in order
|
| 222 |
+
for sentiment, color in zip(sentiments, colors):
|
| 223 |
+
distribution_fig.add_trace(go.Bar(
|
| 224 |
+
name=sentiment,
|
| 225 |
+
x=df['Product'],
|
| 226 |
+
y=df[sentiment],
|
| 227 |
+
marker_color=color
|
| 228 |
+
))
|
| 229 |
+
|
| 230 |
+
distribution_fig.update_layout(
|
| 231 |
+
barmode='stack',
|
| 232 |
+
title='Sentiment Distribution by Product',
|
| 233 |
+
yaxis_title='Percentage (%)',
|
| 234 |
+
showlegend=True
|
| 235 |
+
)
|
| 236 |
|
| 237 |
+
return score_comparison_fig, distribution_fig, summary_df, output_path
|
| 238 |
|
| 239 |
|
| 240 |
def process_file(file_obj):
|
|
|
|
| 244 |
try:
|
| 245 |
file_path = file_obj.name
|
| 246 |
sentiment_results = defaultdict(pd.Series)
|
| 247 |
+
avg_sentiment_scores = {}
|
| 248 |
all_processed_dfs = {}
|
| 249 |
|
| 250 |
if file_path.endswith('.csv'):
|
| 251 |
df = pd.read_csv(file_path)
|
| 252 |
product_name = "Product" # Default name for CSV
|
| 253 |
+
processed_df, sentiment_counts, avg_score = process_single_sheet(df, product_name)
|
| 254 |
all_processed_dfs[product_name] = processed_df
|
| 255 |
sentiment_results[product_name] = sentiment_counts
|
| 256 |
+
avg_sentiment_scores[product_name] = avg_score
|
| 257 |
|
| 258 |
elif file_path.endswith(('.xlsx', '.xls')):
|
| 259 |
excel_file = pd.ExcelFile(file_path)
|
| 260 |
for sheet_name in excel_file.sheet_names:
|
| 261 |
df = pd.read_excel(file_path, sheet_name=sheet_name)
|
| 262 |
+
processed_df, sentiment_counts, avg_score = process_single_sheet(df, sheet_name)
|
| 263 |
all_processed_dfs[sheet_name] = processed_df
|
| 264 |
sentiment_results[sheet_name] = sentiment_counts
|
| 265 |
+
avg_sentiment_scores[sheet_name] = avg_score
|
| 266 |
else:
|
| 267 |
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
|
| 268 |
|
| 269 |
+
# Create visualizations with new sentiment score chart
|
| 270 |
+
score_comparison_fig, distribution_fig, ratio_fig, summary_df = create_comparison_charts(
|
| 271 |
+
sentiment_results, avg_sentiment_scores
|
| 272 |
+
)
|
| 273 |
|
| 274 |
# Save results
|
| 275 |
output_path = "sentiment_analysis_results.xlsx"
|
| 276 |
with pd.ExcelWriter(output_path) as writer:
|
| 277 |
for sheet_name, df in all_processed_dfs.items():
|
| 278 |
df.to_excel(writer, sheet_name=sheet_name, index=False)
|
| 279 |
+
if isinstance(summary_df, pd.DataFrame): # Safety check
|
| 280 |
+
summary_df.to_excel(writer, sheet_name='Summary', index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
+
# Save results
|
| 283 |
+
output_path = "sentiment_analysis_results.xlsx"
|
| 284 |
+
with pd.ExcelWriter(output_path) as writer:
|
| 285 |
+
# Save individual sheet data
|
| 286 |
+
for sheet_name, df in all_processed_dfs.items():
|
| 287 |
+
df.to_excel(writer, sheet_name=sheet_name, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
# Save summary data
|
| 290 |
+
if isinstance(summary_df, pd.DataFrame): # Ensure it's a DataFrame before saving
|
| 291 |
+
summary_df.to_excel(writer, sheet_name='Summary', index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
+
return score_comparison_fig, distribution_fig, summary_df, output_path
|
|
|
|
| 294 |
|
| 295 |
+
except Exception as e:
|
| 296 |
+
raise gr.Error(str(e))
|
| 297 |
|
| 298 |
|
| 299 |
# Update the Gradio interface
|
|
|
|
| 322 |
with gr.Row():
|
| 323 |
analyze_btn = gr.Button("Analyze Sentiments")
|
| 324 |
|
| 325 |
+
with gr.Row():
|
| 326 |
+
sentiment_score_plot = gr.Plot(label="Weighted Sentiment Scores")
|
| 327 |
+
|
| 328 |
with gr.Row():
|
| 329 |
distribution_plot = gr.Plot(label="Sentiment Distribution")
|
| 330 |
|
|
|
|
| 337 |
analyze_btn.click(
|
| 338 |
fn=process_file,
|
| 339 |
inputs=[file_input],
|
| 340 |
+
outputs=[sentiment_score_plot, distribution_plot, summary_table, output_file]
|
| 341 |
)
|
| 342 |
|
| 343 |
+
# Launch interface
|
| 344 |
+
interface.launch()
|