File size: 6,620 Bytes
85283fb
e698a98
 
7661963
9139806
 
85283fb
ec73267
f87a760
 
9139806
 
85283fb
 
 
9139806
85283fb
f87a760
bb7173b
9139806
 
 
 
85283fb
 
f87a760
85283fb
02511ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87a760
85283fb
f87a760
85283fb
f87a760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914290d
9139806
 
914290d
9139806
59d6306
9139806
914290d
f87a760
84b867e
903d68e
85283fb
 
914290d
85283fb
914290d
 
 
 
 
 
 
 
 
 
 
 
85283fb
914290d
 
 
 
85283fb
9139806
914290d
9139806
85283fb
9139806
 
85283fb
914290d
f87a760
 
85283fb
e698a98
85283fb
f87a760
85283fb
f87a760
e698a98
85283fb
 
9139806
 
e698a98
 
85283fb
f87a760
85283fb
9139806
f87a760
 
 
 
 
 
 
85283fb
9139806
 
 
 
85283fb
 
9139806
 
 
 
 
 
85283fb
 
 
 
f87a760
85283fb
9139806
f87a760
85283fb
e698a98
 
 
bb7173b
f87a760
9139806
e698a98
85283fb
e698a98
 
 
f87a760
9139806
85283fb
f87a760
 
e698a98
f87a760
 
 
9139806
 
6899c06
 
f87a760
6899c06
e698a98
9139806
85283fb
9139806
e698a98
 
85283fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import random
import torch
import spaces
import numpy as np
import gradio as gr

from chatterbox.tts_turbo import ChatterboxTurboTTS
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download


# =========================
# CONFIG
# =========================
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_REPO = "rahul7star/vaani-lora-lata"
LORA_FILE = "adapter_model.safetensors"

print(f"🚀 Running on device: {DEVICE}")

MODEL = None


# =========================
# MANUAL LORA MERGE
# =========================
def merge_lora_into_t3(t3_model, lora_state):
    """
    Manual LoRA merge (PEFT-free).
    """
    print("🔧 Merging LoRA weights into T3...")

    loras = {}

    for k, v in lora_state.items():
        if ".lora_A." in k or ".lora_B." in k:
            prefix = k.split(".lora_")[0]
            loras.setdefault(prefix, {})[
                k.split(".lora_")[1].split(".")[0]
            ] = v

        elif k.endswith(".lora_alpha"):
            prefix = k.replace(".lora_alpha", "")
            loras.setdefault(prefix, {})["alpha"] = v.item()

    for layer_path, parts in loras.items():
        if "A" not in parts or "B" not in parts:
            continue

        module = t3_model
        for attr in layer_path.split("."):
            module = getattr(module, attr)

        W = module.weight.data
        A = parts["A"].to(W.device)
        B = parts["B"].to(W.device)

        r = A.shape[0]
        alpha = parts.get("alpha", r)
        scale = alpha / r

        W += (B @ A) * scale

    print("✅ LoRA merged successfully")

def merge_lora_into_t3(t3_model, lora_state):
    """
    Manually merges LoRA weights into the base T3 model (NO PEFT).
    """

    print("🔧 Merging Hindi LoRA into T3 weights...")

    # Group LoRA tensors
    loras = {}
    for k, v in lora_state.items():
        if ".lora_A." in k or ".lora_B." in k:
            prefix = k.split(".lora_")[0]
            loras.setdefault(prefix, {})[k.split(".lora_")[1].split(".")[0]] = v

        if k.endswith("lora_alpha"):
            prefix = k.replace(".lora_alpha", "")
            loras.setdefault(prefix, {})["alpha"] = v.item()

    for layer_name, parts in loras.items():
        if "A" not in parts or "B" not in parts:
            continue

        # Locate base weight
        module = t3_model
        for attr in layer_name.split("."):
            module = getattr(module, attr)

        W = module.weight.data
        A = parts["A"].to(W.device)
        B = parts["B"].to(W.device)

        r = A.shape[0]
        alpha = parts.get("alpha", r)
        scale = alpha / r

        # Merge
        W += (B @ A) * scale

    print("✅ LoRA merge complete")
    return t3_model


# =========================
# MODEL LOADING
# =========================
def get_or_load_model():
    """Loads ChatterboxTTS and merges Hindi LoRA or loads full T3 safely."""
    global MODEL
    if MODEL is None:
        print("Model not loaded, initializing...")
        try:
            MODEL = ChatterboxTurboTTS.from_pretrained(DEVICE)

            checkpoint_path = hf_hub_download(
                repo_id=MODEL_REPO,
                filename=LORA_FILE ,
                token=os.environ["HF_TOKEN"],
            )

            state = load_file(checkpoint_path, device="cpu")

            # --------------------------------------------------
            # CASE 1: FULL T3 CHECKPOINT (your repo currently)
            # --------------------------------------------------
            if any(k.startswith("tfmr.") for k in state.keys()):
                print("Detected FULL T3 checkpoint – loading directly")
                MODEL.t3.load_state_dict(state, strict=True)

            # --------------------------------------------------
            # CASE 2: REAL LoRA ADAPTER → MANUAL MERGE
            # --------------------------------------------------
            else:
                print("Detected LoRA adapter – merging weights")

                merge_lora_into_t3(MODEL.t3, state)

            MODEL.to(DEVICE)
            print(f"Model loaded successfully on {DEVICE}")

        except Exception as e:
            print(f"Error loading model: {e}")
            raise

    return MODEL



# Load on startup
get_or_load_model()


# =========================
# SEED
# =========================
def set_seed(seed):
    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)
    if DEVICE == "cuda":
        torch.cuda.manual_seed_all(seed)


# =========================
# TTS
# =========================
def generate_tts_audio(
    text_input,
    audio_prompt_path_input,
    exaggeration_input,
    temperature_input,
    seed_num_input,
    cfgw_input,
):
    model = get_or_load_model()

    if seed_num_input != 0:
        set_seed(int(seed_num_input))

    wav = model.generate(
        text_input[:3000],
        audio_prompt_path=audio_prompt_path_input,
        exaggeration=exaggeration_input,
        temperature=temperature_input,
        cfg_weight=cfgw_input,
    )

    return model.sr, wav.squeeze(0).numpy()


# =========================
# UI
# =========================
with gr.Blocks() as demo:
    gr.Markdown("## 🇮🇳 Hindi TTS – Chatterbox (LoRA merged, no PEFT)")

    with gr.Row():
        with gr.Column():
            text = gr.Textbox(
                value="राजनीतिज्ञों ने कहा कि उन्होंने निर्णायक मत को अनावश्यक रूप से निर्धारित करने के लिए अफ़गान संविधान में काफी अस्पष्टता पाई थी",
                label="Text",
                max_lines=5
            )

            ref_wav = gr.Audio(
                sources=["upload", "microphone"],
                type="filepath",
                label="Reference Audio (optional)"
            )

            exaggeration = gr.Slider(0.25, 2.0, step=0.05, value=0.5)
            cfg_weight = gr.Slider(0.2, 1.0, step=0.05, value=0.3)

            with gr.Accordion("Advanced", open=False):
                seed_num = gr.Number(value=0, label="Seed (0=random)")
                temp = gr.Slider(0.05, 5.0, step=0.05, value=0.6)

            run_btn = gr.Button("Generate", variant="primary")

        with gr.Column():
            audio_output = gr.Audio(label="Output")

    run_btn.click(
        fn=generate_tts_audio,
        inputs=[text, ref_wav, exaggeration, temp, seed_num, cfg_weight],
        outputs=[audio_output],
    )

demo.launch()