Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import datetime
|
| 5 |
import plotly.express as px
|
|
@@ -54,10 +55,12 @@ def _pick_col(df, candidates):
|
|
| 54 |
return norm[cand]
|
| 55 |
return None
|
| 56 |
|
| 57 |
-
def _kblocks_to_tib(kblocks):
|
| 58 |
-
# KiB blocks -> TiB (so 104149210112 -> ~97.0)
|
| 59 |
return kblocks / (1024**3)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
| 61 |
def plot_disks(alert_threshold_pct=99.0):
|
| 62 |
df = datasets.load_dataset(
|
| 63 |
"pluslab/PLUS_Lab_GPUs_Data",
|
|
@@ -88,61 +91,54 @@ def plot_disks(alert_threshold_pct=99.0):
|
|
| 88 |
else:
|
| 89 |
df["Label"] = df[server_col].astype(str) + " • " + df[fs_col].astype(str)
|
| 90 |
|
| 91 |
-
# Totals & pct
|
| 92 |
df["Total_kb"] = df[used_col] + df[avail_col]
|
| 93 |
df["Used_pct"] = (df[used_col] / df["Total_kb"]) * 100.0
|
| 94 |
df["Used_pct"] = df["Used_pct"].clip(0, 100)
|
| 95 |
df["Avail_pct"] = (100.0 - df["Used_pct"]).clip(0, 100)
|
| 96 |
|
| 97 |
-
# Sizes
|
| 98 |
df["Used_TB"] = _kblocks_to_tib(df[used_col])
|
| 99 |
-
df["Avail_TB"] = _kblocks_to_tib(df[avail_col])
|
| 100 |
df["Total_TB"] = _kblocks_to_tib(df["Total_kb"])
|
|
|
|
| 101 |
|
| 102 |
-
#
|
| 103 |
df["ALERT"] = df["Used_pct"] > alert_threshold_pct
|
| 104 |
|
| 105 |
-
# Sort
|
| 106 |
df = df.sort_values("Total_kb", ascending=False).reset_index(drop=True)
|
| 107 |
|
| 108 |
-
|
| 109 |
-
used_text = [f"{u:.1f} TB ({p:.0f}%)" for u, p in zip(df["Used_TB"], df["Used_pct"])]
|
| 110 |
-
total_text = [f"{t:.1f} TB" for t in df["Total_TB"]]
|
| 111 |
-
avail_text = [f"{a:.1f} TB" for a in df["Avail_TB"]]
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
COLOR_FREE = "#94A3B8" # slate-400
|
| 117 |
-
COLOR_ALERT = "#F59E0B" # amber-500 (dashboard alert)
|
| 118 |
-
COLOR_OKTXT = "#0F172A" # slate-900
|
| 119 |
-
COLOR_ALTXT = "#B45309" # amber-700
|
| 120 |
|
| 121 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
used_colors = np.where(df["ALERT"].to_numpy(), COLOR_ALERT, COLOR_USED)
|
| 123 |
|
| 124 |
-
# Add an icon to the y label for alerts
|
| 125 |
-
y_labels = np.where(df["ALERT"].to_numpy(), "⚠ " + df["Label"], df["Label"])
|
| 126 |
-
|
| 127 |
fig = go.Figure()
|
| 128 |
|
| 129 |
-
# Gray background
|
| 130 |
fig.add_trace(
|
| 131 |
go.Bar(
|
| 132 |
y=y_labels,
|
| 133 |
x=[100] * len(df),
|
| 134 |
base=0,
|
| 135 |
-
name="(hover) Available",
|
| 136 |
orientation="h",
|
| 137 |
marker=dict(color=COLOR_TOTAL),
|
| 138 |
opacity=0.40,
|
| 139 |
hovertemplate="<b>%{y}</b><br>Available: %{customdata}<br><extra></extra>",
|
| 140 |
-
customdata=
|
| 141 |
showlegend=False,
|
| 142 |
)
|
| 143 |
)
|
| 144 |
|
| 145 |
-
# Used
|
| 146 |
fig.add_trace(
|
| 147 |
go.Bar(
|
| 148 |
y=y_labels,
|
|
@@ -163,9 +159,9 @@ def plot_disks(alert_threshold_pct=99.0):
|
|
| 163 |
),
|
| 164 |
customdata=np.stack(
|
| 165 |
[
|
| 166 |
-
df["Used_TB"].to_numpy(),
|
| 167 |
-
df["
|
| 168 |
-
df["Total_TB"].to_numpy(),
|
| 169 |
df["Used_pct"].to_numpy(),
|
| 170 |
],
|
| 171 |
axis=1,
|
|
@@ -173,7 +169,7 @@ def plot_disks(alert_threshold_pct=99.0):
|
|
| 173 |
)
|
| 174 |
)
|
| 175 |
|
| 176 |
-
# Available
|
| 177 |
fig.add_trace(
|
| 178 |
go.Bar(
|
| 179 |
y=y_labels,
|
|
@@ -191,7 +187,7 @@ def plot_disks(alert_threshold_pct=99.0):
|
|
| 191 |
),
|
| 192 |
customdata=np.stack(
|
| 193 |
[
|
| 194 |
-
df["
|
| 195 |
df["Used_TB"].map(lambda v: f"{v:.2f} TB").to_numpy(),
|
| 196 |
df["Total_TB"].map(lambda v: f"{v:.2f} TB").to_numpy(),
|
| 197 |
],
|
|
@@ -200,17 +196,17 @@ def plot_disks(alert_threshold_pct=99.0):
|
|
| 200 |
)
|
| 201 |
)
|
| 202 |
|
| 203 |
-
# Total annotation
|
| 204 |
-
for
|
| 205 |
fig.add_annotation(
|
| 206 |
x=100,
|
| 207 |
-
y=
|
| 208 |
text=ttxt,
|
| 209 |
showarrow=False,
|
| 210 |
xanchor="left",
|
| 211 |
yanchor="middle",
|
| 212 |
xshift=6,
|
| 213 |
-
font=dict(color=(
|
| 214 |
)
|
| 215 |
|
| 216 |
fig.update_layout(
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
import datetime
|
| 6 |
import plotly.express as px
|
|
|
|
| 55 |
return norm[cand]
|
| 56 |
return None
|
| 57 |
|
| 58 |
+
def _kblocks_to_tib(kblocks): # shown as "TB" per your convention
|
|
|
|
| 59 |
return kblocks / (1024**3)
|
| 60 |
|
| 61 |
+
def _kblocks_to_gib(kblocks): # shown as "GB"
|
| 62 |
+
return kblocks / (1024**2)
|
| 63 |
+
|
| 64 |
def plot_disks(alert_threshold_pct=99.0):
|
| 65 |
df = datasets.load_dataset(
|
| 66 |
"pluslab/PLUS_Lab_GPUs_Data",
|
|
|
|
| 91 |
else:
|
| 92 |
df["Label"] = df[server_col].astype(str) + " • " + df[fs_col].astype(str)
|
| 93 |
|
| 94 |
+
# Totals & pct
|
| 95 |
df["Total_kb"] = df[used_col] + df[avail_col]
|
| 96 |
df["Used_pct"] = (df[used_col] / df["Total_kb"]) * 100.0
|
| 97 |
df["Used_pct"] = df["Used_pct"].clip(0, 100)
|
| 98 |
df["Avail_pct"] = (100.0 - df["Used_pct"]).clip(0, 100)
|
| 99 |
|
| 100 |
+
# Sizes
|
| 101 |
df["Used_TB"] = _kblocks_to_tib(df[used_col])
|
|
|
|
| 102 |
df["Total_TB"] = _kblocks_to_tib(df["Total_kb"])
|
| 103 |
+
df["Avail_GB"] = _kblocks_to_gib(df[avail_col]) # <-- GB for hovers
|
| 104 |
|
| 105 |
+
# Alerts
|
| 106 |
df["ALERT"] = df["Used_pct"] > alert_threshold_pct
|
| 107 |
|
| 108 |
+
# Sort
|
| 109 |
df = df.sort_values("Total_kb", ascending=False).reset_index(drop=True)
|
| 110 |
|
| 111 |
+
y_labels = np.where(df["ALERT"].to_numpy(), "⚠ " + df["Label"], df["Label"])
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
used_text = [f"{u:.2f} TB ({p:.0f}%)" for u, p in zip(df["Used_TB"], df["Used_pct"])]
|
| 114 |
+
total_annot = [f"{t:.2f} TB" for t in df["Total_TB"]]
|
| 115 |
+
avail_gb_0 = [f"{g:.0f} GB" for g in df["Avail_GB"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
# Colors
|
| 118 |
+
COLOR_TOTAL = "#CBD5E1"
|
| 119 |
+
COLOR_USED = "#2563EB"
|
| 120 |
+
COLOR_FREE = "#94A3B8"
|
| 121 |
+
COLOR_ALERT = "#F59E0B"
|
| 122 |
used_colors = np.where(df["ALERT"].to_numpy(), COLOR_ALERT, COLOR_USED)
|
| 123 |
|
|
|
|
|
|
|
|
|
|
| 124 |
fig = go.Figure()
|
| 125 |
|
| 126 |
+
# Gray background hover: Available in GB (0dp)
|
| 127 |
fig.add_trace(
|
| 128 |
go.Bar(
|
| 129 |
y=y_labels,
|
| 130 |
x=[100] * len(df),
|
| 131 |
base=0,
|
|
|
|
| 132 |
orientation="h",
|
| 133 |
marker=dict(color=COLOR_TOTAL),
|
| 134 |
opacity=0.40,
|
| 135 |
hovertemplate="<b>%{y}</b><br>Available: %{customdata}<br><extra></extra>",
|
| 136 |
+
customdata=avail_gb_0,
|
| 137 |
showlegend=False,
|
| 138 |
)
|
| 139 |
)
|
| 140 |
|
| 141 |
+
# Used hover: Available in GB (0dp) too
|
| 142 |
fig.add_trace(
|
| 143 |
go.Bar(
|
| 144 |
y=y_labels,
|
|
|
|
| 159 |
),
|
| 160 |
customdata=np.stack(
|
| 161 |
[
|
| 162 |
+
df["Used_TB"].map(lambda v: f"{v:.2f} TB").to_numpy(),
|
| 163 |
+
df["Avail_GB"].map(lambda v: f"{v:.0f} GB").to_numpy(), # <-- changed
|
| 164 |
+
df["Total_TB"].map(lambda v: f"{v:.2f} TB").to_numpy(),
|
| 165 |
df["Used_pct"].to_numpy(),
|
| 166 |
],
|
| 167 |
axis=1,
|
|
|
|
| 169 |
)
|
| 170 |
)
|
| 171 |
|
| 172 |
+
# Available hover: Available in GB (0dp)
|
| 173 |
fig.add_trace(
|
| 174 |
go.Bar(
|
| 175 |
y=y_labels,
|
|
|
|
| 187 |
),
|
| 188 |
customdata=np.stack(
|
| 189 |
[
|
| 190 |
+
df["Avail_GB"].map(lambda v: f"{v:.0f} GB").to_numpy(), # <-- changed
|
| 191 |
df["Used_TB"].map(lambda v: f"{v:.2f} TB").to_numpy(),
|
| 192 |
df["Total_TB"].map(lambda v: f"{v:.2f} TB").to_numpy(),
|
| 193 |
],
|
|
|
|
| 196 |
)
|
| 197 |
)
|
| 198 |
|
| 199 |
+
# Total annotation (TB, 2dp)
|
| 200 |
+
for y, ttxt, is_alert in zip(y_labels, total_annot, df["ALERT"].to_numpy()):
|
| 201 |
fig.add_annotation(
|
| 202 |
x=100,
|
| 203 |
+
y=y,
|
| 204 |
text=ttxt,
|
| 205 |
showarrow=False,
|
| 206 |
xanchor="left",
|
| 207 |
yanchor="middle",
|
| 208 |
xshift=6,
|
| 209 |
+
font=dict(color=("#B45309" if is_alert else "#334155")),
|
| 210 |
)
|
| 211 |
|
| 212 |
fig.update_layout(
|