Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .claude/settings.local.json +2 -1
- README.md +54 -232
- app.py +40 -32
- config.yaml +3 -1
- requirements.txt +4 -1
.claude/settings.local.json
CHANGED
|
@@ -2,7 +2,8 @@
|
|
| 2 |
"permissions": {
|
| 3 |
"allow": [
|
| 4 |
"Bash(pip install:*)",
|
| 5 |
-
"Bash(huggingface-cli:*)"
|
|
|
|
| 6 |
],
|
| 7 |
"deny": []
|
| 8 |
}
|
|
|
|
| 2 |
"permissions": {
|
| 3 |
"allow": [
|
| 4 |
"Bash(pip install:*)",
|
| 5 |
+
"Bash(huggingface-cli:*)",
|
| 6 |
+
"WebFetch(domain:huggingface.co)"
|
| 7 |
],
|
| 8 |
"deny": []
|
| 9 |
}
|
README.md
CHANGED
|
@@ -1,232 +1,54 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
prompt = f"""<|im_start|>system
|
| 56 |
-
You are a professional document writer specializing in creating concise, well-structured one-page business documents.
|
| 57 |
-
<|im_end|>
|
| 58 |
-
<|im_start|>user
|
| 59 |
-
Create a professional one-page document about "{topic}" targeted at {target_audience}.
|
| 60 |
-
|
| 61 |
-
Requirements:
|
| 62 |
-
- Tone: {tone.lower()}
|
| 63 |
-
- Key points to include: {key_points}
|
| 64 |
-
- Length: {length}
|
| 65 |
-
- Format: Use clear headers and bullet points
|
| 66 |
-
- Structure: Title, Executive Summary, Key Points, Benefits, Recommendations, Conclusion
|
| 67 |
-
|
| 68 |
-
Please write the complete one-page document now.
|
| 69 |
-
<|im_end|>
|
| 70 |
-
<|im_start|>assistant
|
| 71 |
-
# {topic}
|
| 72 |
-
|
| 73 |
-
## Executive Summary
|
| 74 |
-
|
| 75 |
-
"""
|
| 76 |
-
|
| 77 |
-
try:
|
| 78 |
-
# Generate the one-pager
|
| 79 |
-
result = generator(
|
| 80 |
-
prompt,
|
| 81 |
-
max_length=len(prompt.split()) + max_tokens,
|
| 82 |
-
num_return_sequences=1,
|
| 83 |
-
temperature=0.8,
|
| 84 |
-
do_sample=True,
|
| 85 |
-
pad_token_id=generator.tokenizer.eos_token_id,
|
| 86 |
-
eos_token_id=generator.tokenizer.eos_token_id,
|
| 87 |
-
repetition_penalty=1.1
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
# Extract the generated text
|
| 91 |
-
generated_text = result[0]['generated_text']
|
| 92 |
-
|
| 93 |
-
# Clean up the output
|
| 94 |
-
onepager = generated_text.replace(prompt, "").strip()
|
| 95 |
-
|
| 96 |
-
# If output is too short, provide a structured fallback
|
| 97 |
-
if len(onepager) < 50:
|
| 98 |
-
onepager = create_structured_onepager(topic, target_audience, key_points, tone)
|
| 99 |
-
|
| 100 |
-
return onepager
|
| 101 |
-
|
| 102 |
-
except Exception as e:
|
| 103 |
-
# Fallback to structured template
|
| 104 |
-
return create_structured_onepager(topic, target_audience, key_points, tone)
|
| 105 |
-
|
| 106 |
-
def create_structured_onepager(topic, target_audience, key_points, tone):
|
| 107 |
-
"""Create a structured one-pager when AI generation fails"""
|
| 108 |
-
|
| 109 |
-
tone_styles = {
|
| 110 |
-
"Professional": "formal and business-oriented",
|
| 111 |
-
"Casual": "friendly and approachable",
|
| 112 |
-
"Academic": "scholarly and research-focused",
|
| 113 |
-
"Persuasive": "compelling and action-oriented",
|
| 114 |
-
"Informative": "clear and educational"
|
| 115 |
-
}
|
| 116 |
-
|
| 117 |
-
style_desc = tone_styles.get(tone, "professional")
|
| 118 |
-
|
| 119 |
-
template = f"""# {topic}
|
| 120 |
-
|
| 121 |
-
## Executive Summary
|
| 122 |
-
This document provides a comprehensive overview of {topic.lower()} tailored for {target_audience.lower()}. The content is presented in a {style_desc} manner to ensure maximum impact and understanding.
|
| 123 |
-
|
| 124 |
-
## Key Points
|
| 125 |
-
|
| 126 |
-
{chr(10).join([f"• {point.strip()}" for point in key_points.split(',') if point.strip()])}
|
| 127 |
-
|
| 128 |
-
## Background
|
| 129 |
-
{topic} represents an important area that requires careful consideration and strategic thinking. Understanding the core concepts and implications is essential for {target_audience.lower()}.
|
| 130 |
-
|
| 131 |
-
## Main Content
|
| 132 |
-
The fundamental aspects of {topic.lower()} encompass several critical areas that directly impact stakeholders. These elements work together to create a comprehensive framework for understanding and implementation.
|
| 133 |
-
|
| 134 |
-
## Benefits & Opportunities
|
| 135 |
-
- Enhanced understanding of core concepts
|
| 136 |
-
- Improved decision-making capabilities
|
| 137 |
-
- Strategic advantages for implementation
|
| 138 |
-
- Clear actionable insights
|
| 139 |
-
|
| 140 |
-
## Recommendations
|
| 141 |
-
1. Begin with thorough analysis of current situation
|
| 142 |
-
2. Develop comprehensive implementation strategy
|
| 143 |
-
3. Monitor progress and adjust approach as needed
|
| 144 |
-
4. Measure results and iterate for continuous improvement
|
| 145 |
-
|
| 146 |
-
## Conclusion
|
| 147 |
-
{topic} offers significant opportunities for {target_audience.lower()} when approached strategically. The key points outlined above provide a solid foundation for moving forward with confidence and clarity.
|
| 148 |
-
|
| 149 |
-
---
|
| 150 |
-
*This one-pager was generated to provide quick, actionable insights on {topic.lower()}.*"""
|
| 151 |
-
|
| 152 |
-
return template
|
| 153 |
-
|
| 154 |
-
# Create the Gradio interface
|
| 155 |
-
def create_interface():
|
| 156 |
-
with gr.Blocks(title="One-Pager Generator", theme=gr.themes.Soft()) as demo:
|
| 157 |
-
gr.Markdown("# 📄 AI One-Pager Generator")
|
| 158 |
-
gr.Markdown("Generate professional one-page documents on any topic using AI!")
|
| 159 |
-
|
| 160 |
-
with gr.Row():
|
| 161 |
-
with gr.Column(scale=1):
|
| 162 |
-
topic_input = gr.Textbox(
|
| 163 |
-
label="Topic",
|
| 164 |
-
placeholder="e.g., Digital Marketing Strategy, Climate Change Solutions, etc.",
|
| 165 |
-
lines=2,
|
| 166 |
-
value="Artificial Intelligence in Healthcare"
|
| 167 |
-
)
|
| 168 |
-
|
| 169 |
-
audience_input = gr.Textbox(
|
| 170 |
-
label="Target Audience",
|
| 171 |
-
placeholder="e.g., Business executives, Students, General public, etc.",
|
| 172 |
-
lines=1,
|
| 173 |
-
value="Healthcare professionals"
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
keypoints_input = gr.Textbox(
|
| 177 |
-
label="Key Points to Cover",
|
| 178 |
-
placeholder="Enter main points separated by commas",
|
| 179 |
-
lines=4,
|
| 180 |
-
value="Machine learning applications, Data privacy, Cost-effectiveness, Implementation challenges"
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
tone_dropdown = gr.Dropdown(
|
| 184 |
-
choices=["Professional", "Casual", "Academic", "Persuasive", "Informative"],
|
| 185 |
-
label="Tone",
|
| 186 |
-
value="Professional"
|
| 187 |
-
)
|
| 188 |
-
|
| 189 |
-
length_dropdown = gr.Dropdown(
|
| 190 |
-
choices=["Short", "Medium", "Long"],
|
| 191 |
-
label="Length",
|
| 192 |
-
value="Medium"
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
generate_btn = gr.Button("🚀 Generate One-Pager", variant="primary")
|
| 196 |
-
|
| 197 |
-
with gr.Column(scale=2):
|
| 198 |
-
output_text = gr.Textbox(
|
| 199 |
-
label="Generated One-Pager",
|
| 200 |
-
lines=25,
|
| 201 |
-
max_lines=35,
|
| 202 |
-
show_copy_button=True,
|
| 203 |
-
placeholder="Your generated one-pager will appear here..."
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
with gr.Row():
|
| 207 |
-
gr.Markdown("""
|
| 208 |
-
### 💡 Tips for Best Results:
|
| 209 |
-
- **Be specific** with your topic for more targeted content
|
| 210 |
-
- **Include 3-5 key points** separated by commas
|
| 211 |
-
- **Choose the right tone** for your intended audience
|
| 212 |
-
- **Use descriptive audience** details (e.g., "C-level executives" vs "executives")
|
| 213 |
-
""")
|
| 214 |
-
|
| 215 |
-
# Connect the generate button to the function
|
| 216 |
-
generate_btn.click(
|
| 217 |
-
fn=generate_onepager,
|
| 218 |
-
inputs=[topic_input, audience_input, keypoints_input, tone_dropdown, length_dropdown],
|
| 219 |
-
outputs=output_text
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
-
return demo
|
| 223 |
-
|
| 224 |
-
# Initialize model and launch
|
| 225 |
-
if __name__ == "__main__":
|
| 226 |
-
print("🚀 Starting One-Pager Generator...")
|
| 227 |
-
print("📥 Loading AI model...")
|
| 228 |
-
initialize_model()
|
| 229 |
-
print("✅ Model loaded! Launching interface...")
|
| 230 |
-
|
| 231 |
-
demo = create_interface()
|
| 232 |
-
demo.launch()
|
|
|
|
| 1 |
+
# 📄 AI One-Pager Generator
|
| 2 |
+
|
| 3 |
+
An intelligent Gradio application that generates professional one-page documents on any topic using Hugging Face transformers.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- **Topic-based Generation**: Create one-pagers on any subject
|
| 8 |
+
- **Customizable Parameters**:
|
| 9 |
+
- Target audience specification
|
| 10 |
+
- Tone selection (Professional, Casual, Academic, Persuasive, Informative)
|
| 11 |
+
- Length control (Short, Medium, Long)
|
| 12 |
+
- Key points input
|
| 13 |
+
- **Professional Formatting**: Structured output with title, executive summary, key points, and conclusion
|
| 14 |
+
- **Easy to Use**: Simple web interface powered by Gradio
|
| 15 |
+
|
| 16 |
+
## Installation
|
| 17 |
+
|
| 18 |
+
1. Clone this repository
|
| 19 |
+
2. Install dependencies:
|
| 20 |
+
```bash
|
| 21 |
+
pip install -r requirements.txt
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
3. Run the application:
|
| 25 |
+
```bash
|
| 26 |
+
python app.py
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
## Usage
|
| 30 |
+
|
| 31 |
+
1. Enter your topic in the "Topic" field
|
| 32 |
+
2. Specify your target audience
|
| 33 |
+
3. List key points you want covered
|
| 34 |
+
4. Select the appropriate tone and length
|
| 35 |
+
5. Click "Generate One-Pager"
|
| 36 |
+
6. Copy and use your generated document!
|
| 37 |
+
|
| 38 |
+
## Deployment to Hugging Face Spaces
|
| 39 |
+
|
| 40 |
+
This app is ready to be deployed to Hugging Face Spaces:
|
| 41 |
+
|
| 42 |
+
1. Create a new Space on Hugging Face
|
| 43 |
+
2. Upload these files to your Space
|
| 44 |
+
3. Your app will be automatically deployed!
|
| 45 |
+
|
| 46 |
+
## Model Information
|
| 47 |
+
|
| 48 |
+
This application uses Qwen 2.5-Omni-7B, a state-of-the-art 2024/2025 multimodal language model with 7B parameters, specifically optimized for instruction following and high-quality document generation. Fallback models include Qwen 2.5-7B-Instruct and Qwen 2.5-1.5B-Instruct for compatibility across different hardware configurations.
|
| 49 |
+
|
| 50 |
+
**Note**: This model performs best on GPU-enabled Spaces for optimal speed and quality.
|
| 51 |
+
|
| 52 |
+
## License
|
| 53 |
+
|
| 54 |
+
MIT License
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -9,38 +9,42 @@ generator = None
|
|
| 9 |
def initialize_model():
|
| 10 |
global generator
|
| 11 |
try:
|
| 12 |
-
# Use
|
|
|
|
| 13 |
generator = pipeline(
|
| 14 |
"text-generation",
|
| 15 |
-
model="
|
| 16 |
-
device
|
| 17 |
-
torch_dtype=torch.float32,
|
| 18 |
-
trust_remote_code=True
|
|
|
|
| 19 |
)
|
| 20 |
-
return "
|
| 21 |
except Exception as e:
|
| 22 |
-
# Fallback to
|
| 23 |
try:
|
| 24 |
-
|
| 25 |
generator = pipeline(
|
| 26 |
-
"
|
| 27 |
-
model="
|
| 28 |
-
device
|
| 29 |
-
torch_dtype=torch.float32
|
|
|
|
| 30 |
)
|
| 31 |
-
return "Fallback model (
|
| 32 |
except Exception as e2:
|
| 33 |
-
# Final fallback to
|
| 34 |
try:
|
| 35 |
generator = pipeline(
|
| 36 |
"text-generation",
|
| 37 |
-
model="
|
| 38 |
device=-1,
|
| 39 |
-
torch_dtype=torch.float32
|
|
|
|
| 40 |
)
|
| 41 |
-
return "Final fallback model (
|
| 42 |
except Exception as e3:
|
| 43 |
-
return f"All models failed:
|
| 44 |
|
| 45 |
def generate_onepager(topic, target_audience, key_points, tone, length):
|
| 46 |
if generator is None:
|
|
@@ -50,23 +54,27 @@ def generate_onepager(topic, target_audience, key_points, tone, length):
|
|
| 50 |
length_tokens = {"Short": 200, "Medium": 400, "Long": 600}
|
| 51 |
max_tokens = length_tokens.get(length, 400)
|
| 52 |
|
| 53 |
-
# Create
|
| 54 |
-
prompt = f"""
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
-
|
| 62 |
-
- Key
|
| 63 |
-
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
# {topic}
|
| 68 |
|
| 69 |
## Executive Summary
|
|
|
|
| 70 |
"""
|
| 71 |
|
| 72 |
try:
|
|
|
|
| 9 |
def initialize_model():
|
| 10 |
global generator
|
| 11 |
try:
|
| 12 |
+
# Use Qwen 2.5-Omni-7B - state-of-the-art multimodal model
|
| 13 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 14 |
generator = pipeline(
|
| 15 |
"text-generation",
|
| 16 |
+
model="Qwen/Qwen2.5-Omni-7B",
|
| 17 |
+
device=device,
|
| 18 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 19 |
+
trust_remote_code=True,
|
| 20 |
+
model_kwargs={"attn_implementation": "flash_attention_2"} if torch.cuda.is_available() else {}
|
| 21 |
)
|
| 22 |
+
return f"Qwen 2.5-Omni-7B loaded successfully on {'GPU' if device == 0 else 'CPU'}!"
|
| 23 |
except Exception as e:
|
| 24 |
+
# Fallback to regular Qwen 7B instruct
|
| 25 |
try:
|
| 26 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 27 |
generator = pipeline(
|
| 28 |
+
"text-generation",
|
| 29 |
+
model="Qwen/Qwen2.5-7B-Instruct",
|
| 30 |
+
device=device,
|
| 31 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 32 |
+
trust_remote_code=True
|
| 33 |
)
|
| 34 |
+
return f"Fallback model (Qwen 2.5-7B-Instruct) loaded on {'GPU' if device == 0 else 'CPU'}!"
|
| 35 |
except Exception as e2:
|
| 36 |
+
# Final fallback to 1.5B model
|
| 37 |
try:
|
| 38 |
generator = pipeline(
|
| 39 |
"text-generation",
|
| 40 |
+
model="Qwen/Qwen2.5-1.5B-Instruct",
|
| 41 |
device=-1,
|
| 42 |
+
torch_dtype=torch.float32,
|
| 43 |
+
trust_remote_code=True
|
| 44 |
)
|
| 45 |
+
return "Final fallback model (Qwen 2.5-1.5B-Instruct) loaded on CPU!"
|
| 46 |
except Exception as e3:
|
| 47 |
+
return f"All models failed: Omni: {str(e)}, 7B: {str(e2)}, 1.5B: {str(e3)}"
|
| 48 |
|
| 49 |
def generate_onepager(topic, target_audience, key_points, tone, length):
|
| 50 |
if generator is None:
|
|
|
|
| 54 |
length_tokens = {"Short": 200, "Medium": 400, "Long": 600}
|
| 55 |
max_tokens = length_tokens.get(length, 400)
|
| 56 |
|
| 57 |
+
# Create an optimized prompt for Qwen 2.5 instruction format
|
| 58 |
+
prompt = f"""<|im_start|>system
|
| 59 |
+
You are a professional document writer specializing in creating concise, well-structured one-page business documents.
|
| 60 |
+
<|im_end|>
|
| 61 |
+
<|im_start|>user
|
| 62 |
+
Create a professional one-page document about "{topic}" targeted at {target_audience}.
|
| 63 |
+
|
| 64 |
+
Requirements:
|
| 65 |
+
- Tone: {tone.lower()}
|
| 66 |
+
- Key points to include: {key_points}
|
| 67 |
+
- Length: {length}
|
| 68 |
+
- Format: Use clear headers and bullet points
|
| 69 |
+
- Structure: Title, Executive Summary, Key Points, Benefits, Recommendations, Conclusion
|
| 70 |
+
|
| 71 |
+
Please write the complete one-page document now.
|
| 72 |
+
<|im_end|>
|
| 73 |
+
<|im_start|>assistant
|
| 74 |
# {topic}
|
| 75 |
|
| 76 |
## Executive Summary
|
| 77 |
+
|
| 78 |
"""
|
| 79 |
|
| 80 |
try:
|
config.yaml
CHANGED
|
@@ -7,4 +7,6 @@ sdk_version: 4.44.0
|
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
license: mit
|
| 10 |
-
|
|
|
|
|
|
|
|
|
| 7 |
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
license: mit
|
| 10 |
+
suggested_hardware: t4-small
|
| 11 |
+
suggested_storage: small
|
| 12 |
+
short_description: Generate professional one-page documents using Qwen 2.5-Omni-7B
|
requirements.txt
CHANGED
|
@@ -2,4 +2,7 @@ gradio
|
|
| 2 |
transformers
|
| 3 |
torch
|
| 4 |
huggingface_hub
|
| 5 |
-
tokenizers
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
transformers
|
| 3 |
torch
|
| 4 |
huggingface_hub
|
| 5 |
+
tokenizers
|
| 6 |
+
flash-attn
|
| 7 |
+
accelerate
|
| 8 |
+
bitsandbytes
|