Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,11 @@ from huggingface_hub import hf_hub_download
|
|
| 5 |
from safetensors.torch import load_file
|
| 6 |
|
| 7 |
### SDXL Turbo ####
|
| 8 |
-
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pipe_turbo.to("cuda")
|
| 10 |
|
| 11 |
### SDXL Lightning ###
|
|
@@ -13,9 +17,19 @@ base = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
| 13 |
repo = "ByteDance/SDXL-Lightning"
|
| 14 |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
|
| 15 |
|
| 16 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(
|
| 17 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)
|
| 18 |
-
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
| 20 |
pipe_lightning.to("cuda")
|
| 21 |
|
|
@@ -23,11 +37,21 @@ pipe_lightning.to("cuda")
|
|
| 23 |
repo_name = "ByteDance/Hyper-SD"
|
| 24 |
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
|
| 25 |
|
| 26 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(
|
| 27 |
-
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name)
|
| 28 |
-
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
| 30 |
pipe_hyper.to("cuda")
|
|
|
|
| 31 |
|
| 32 |
def run_comparison(prompt):
|
| 33 |
image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
|
|
|
|
| 5 |
from safetensors.torch import load_file
|
| 6 |
|
| 7 |
### SDXL Turbo ####
|
| 8 |
+
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo",
|
| 9 |
+
vae=vae,
|
| 10 |
+
torch_dtype=torch.float16,
|
| 11 |
+
variant="fp16"
|
| 12 |
+
)
|
| 13 |
pipe_turbo.to("cuda")
|
| 14 |
|
| 15 |
### SDXL Lightning ###
|
|
|
|
| 17 |
repo = "ByteDance/SDXL-Lightning"
|
| 18 |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
|
| 19 |
|
| 20 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
|
| 21 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
|
| 22 |
+
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base,
|
| 23 |
+
unet=unet,
|
| 24 |
+
vae=vae,
|
| 25 |
+
text_encoder=pipe_turbo.text_encoder,
|
| 26 |
+
text_encoder_2=pipe_turbo.text_encoder_2,
|
| 27 |
+
tokenizer=pipe_turbo.tokenizer,
|
| 28 |
+
tokenizer_2=pipe_turbo.tokenizer_2,
|
| 29 |
+
torch_dtype=torch.float16,
|
| 30 |
+
variant="fp16"
|
| 31 |
+
)#.to("cuda")
|
| 32 |
+
del unet
|
| 33 |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
| 34 |
pipe_lightning.to("cuda")
|
| 35 |
|
|
|
|
| 37 |
repo_name = "ByteDance/Hyper-SD"
|
| 38 |
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
|
| 39 |
|
| 40 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
|
| 41 |
+
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name)))
|
| 42 |
+
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base,
|
| 43 |
+
unet=unet,
|
| 44 |
+
vae=vae,
|
| 45 |
+
text_encoder=pipe_turbo.text_encoder,
|
| 46 |
+
text_encoder_2=pipe_turbo.text_encoder_2,
|
| 47 |
+
tokenizer=pipe_turbo.tokenizer,
|
| 48 |
+
tokenizer_2=pipe_turbo.tokenizer_2,
|
| 49 |
+
torch_dtype=torch.float16,
|
| 50 |
+
variant="fp16"
|
| 51 |
+
)#.to("cuda")
|
| 52 |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
| 53 |
pipe_hyper.to("cuda")
|
| 54 |
+
del unet
|
| 55 |
|
| 56 |
def run_comparison(prompt):
|
| 57 |
image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
|