""" Synthetic Data Generation for SQL Learning Assistant Covers: 1. Create synthetic datasets for training/testing 2. Implement data augmentation techniques 3. Ensure diversity and quality of generated data 4. Address privacy and ethical considerations """ import pandas as pd import random import re import hashlib import json from collections import Counter from datetime import datetime import matplotlib.pyplot as plt import os import sys # Add parent directory to path for imports sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from synthetic.synonyms import SYNONYMS, get_synonym, has_synonym # ============================================================================= # OUTPUT DIRECTORIES # ============================================================================= OUTPUT_DIR = "outputs/synthetic" VIZ_DIR = f"{OUTPUT_DIR}/visualizations" REPORT_DIR = f"{OUTPUT_DIR}/reports" STATS_DIR = f"{OUTPUT_DIR}/stats" def setup_directories(): """Create output directories.""" for d in [OUTPUT_DIR, VIZ_DIR, REPORT_DIR, STATS_DIR]: os.makedirs(d, exist_ok=True) # ============================================================================= # SENTENCE VARIATIONS # ============================================================================= PREFIXES = ["", "Can you ", "Please ", "I want to ", "I need to ", "Could you ", "Help me ", "Show me how to "] SUFFIXES = ["", "?", " please", " for me", " please?"] # ============================================================================= # AUGMENTATION TECHNIQUES # ============================================================================= def replace_synonyms(text, prob=0.4): """Technique 1: Replace words with synonyms.""" words = text.split() result = [] for word in words: clean = re.sub(r'[^\w]', '', word).lower() if has_synonym(clean) and random.random() < prob: syn = get_synonym(clean) result.append(syn if word[-1] not in '.,?!' else syn + word[-1]) else: result.append(word) return ' '.join(result) def random_insertion(text, prob=0.15): """Technique 2: Insert contextual words.""" inserts = ["also", "specifically", "exactly", "just", "only"] words = text.split() if len(words) > 3 and random.random() < prob: pos = random.randint(1, len(words) - 1) words.insert(pos, random.choice(inserts)) return ' '.join(words) def random_swap(text, prob=0.1): """Technique 3: Swap adjacent words.""" words = text.split() if len(words) > 4 and random.random() < prob: pos = random.randint(1, len(words) - 3) words[pos], words[pos + 1] = words[pos + 1], words[pos] return ' '.join(words) def structure_variation(text): """Technique 4: Add prefixes and suffixes.""" prefix = random.choice(PREFIXES) suffix = random.choice(SUFFIXES) if prefix: text = text[0].lower() + text[1:] if text else text result = prefix + text + suffix return result[0].upper() + result[1:] if result else result def case_variation(text): """Technique 5: Vary capitalization.""" r = random.random() if r < 0.6: return text[0].upper() + text[1:].lower() if text else text elif r < 0.85: return text.lower() return text def generate_variation(question): """Apply all augmentation techniques.""" variation = question variation = replace_synonyms(variation) variation = random_insertion(variation) variation = random_swap(variation) variation = structure_variation(variation) variation = case_variation(variation) return variation # ============================================================================= # QUALITY AND DIVERSITY # ============================================================================= def diversity_score(original, variation): """Calculate diversity between original and variation.""" orig_words = set(original.lower().split()) var_words = set(variation.lower().split()) if not orig_words or not var_words: return 0 intersection = orig_words & var_words union = orig_words | var_words return 1 - (len(intersection) / len(union)) def quality_check(question, sql): """Check if generated data passes quality standards.""" if not question or len(question.strip()) < 10: return False if not sql or len(sql.strip()) < 5: return False if not re.search(r'[a-zA-Z]', question): return False if len(question) > 500: return False return True def remove_duplicates(data): """Remove duplicate entries.""" seen = set() unique = [] for item in data: normalized = re.sub(r'[^\w\s]', '', item['question'].lower()) normalized = ' '.join(normalized.split()) h = hashlib.md5(normalized.encode()).hexdigest() if h not in seen: seen.add(h) unique.append(item) return unique # ============================================================================= # PRIVACY (ETHICAL CONSIDERATIONS) # ============================================================================= def anonymize(text): """Remove sensitive information.""" text = re.sub(r'\b[\w.-]+@[\w.-]+\.\w+\b', '[EMAIL]', text) text = re.sub(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', '[PHONE]', text) text = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[SSN]', text) return text # ============================================================================= # STATISTICS # ============================================================================= def calculate_stats(original_df, synthetic_df): """Calculate dataset statistics.""" def get_stats(df, name): questions = df['question'].tolist() lengths = [len(q.split()) for q in questions] return { 'name': name, 'samples': len(df), 'avg_length': round(sum(lengths) / len(lengths), 2), 'min_length': min(lengths), 'max_length': max(lengths), 'unique_words': len(set(' '.join(questions).lower().split())) } orig_stats = get_stats(original_df, 'Original') synth_stats = get_stats(synthetic_df, 'Synthetic') diversity_scores = synthetic_df['diversity_score'].tolist() diversity_stats = { 'avg': round(sum(diversity_scores) / len(diversity_scores), 4), 'min': round(min(diversity_scores), 4), 'max': round(max(diversity_scores), 4) } return { 'original': orig_stats, 'synthetic': synth_stats, 'diversity': diversity_stats, 'augmentation_factor': round(len(synthetic_df) / len(original_df), 2) } # ============================================================================= # VISUALIZATIONS # ============================================================================= def create_visualizations(original_df, synthetic_df): """Create and save visualizations.""" plt.style.use('seaborn-v0_8-whitegrid') # 1. Dataset Size Comparison fig, ax = plt.subplots(figsize=(8, 5)) sizes = [len(original_df), len(synthetic_df)] bars = ax.bar(['Original', 'Synthetic'], sizes, color=['#3498db', '#2ecc71']) for bar, size in zip(bars, sizes): ax.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 20, f'{size:,}', ha='center', fontweight='bold') ax.set_ylabel('Samples') ax.set_title('Dataset Size Comparison') plt.savefig(f'{VIZ_DIR}/01_size_comparison.png', dpi=150, bbox_inches='tight') plt.close() # 2. Question Length Distribution fig, axes = plt.subplots(1, 2, figsize=(12, 4)) orig_len = [len(q.split()) for q in original_df['question']] synth_len = [len(q.split()) for q in synthetic_df['question']] axes[0].hist(orig_len, bins=25, color='#3498db', alpha=0.7) axes[0].set_title('Original - Question Length') axes[0].set_xlabel('Words') axes[1].hist(synth_len, bins=25, color='#2ecc71', alpha=0.7) axes[1].set_title('Synthetic - Question Length') axes[1].set_xlabel('Words') plt.tight_layout() plt.savefig(f'{VIZ_DIR}/02_length_distribution.png', dpi=150, bbox_inches='tight') plt.close() # 3. Diversity Score Distribution fig, ax = plt.subplots(figsize=(8, 5)) ax.hist(synthetic_df['diversity_score'], bins=20, color='#9b59b6', alpha=0.7) ax.axvline(synthetic_df['diversity_score'].mean(), color='red', linestyle='--', label=f"Mean: {synthetic_df['diversity_score'].mean():.3f}") ax.set_xlabel('Diversity Score') ax.set_ylabel('Frequency') ax.set_title('Diversity Score Distribution') ax.legend() plt.savefig(f'{VIZ_DIR}/03_diversity_distribution.png', dpi=150, bbox_inches='tight') plt.close() print(f" Visualizations saved to {VIZ_DIR}/") # ============================================================================= # REPORT GENERATION # ============================================================================= def generate_report(stats): """Generate markdown report.""" report = f"""# Synthetic Data Generation Report **Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ## Dataset Statistics | Metric | Original | Synthetic | |--------|----------|-----------| | Samples | {stats['original']['samples']:,} | {stats['synthetic']['samples']:,} | | Avg Length | {stats['original']['avg_length']} | {stats['synthetic']['avg_length']} | | Min Length | {stats['original']['min_length']} | {stats['synthetic']['min_length']} | | Max Length | {stats['original']['max_length']} | {stats['synthetic']['max_length']} | | Unique Words | {stats['original']['unique_words']:,} | {stats['synthetic']['unique_words']:,} | ## Augmentation Results - **Augmentation Factor:** {stats['augmentation_factor']}x - **Avg Diversity Score:** {stats['diversity']['avg']} - **Min Diversity Score:** {stats['diversity']['min']} - **Max Diversity Score:** {stats['diversity']['max']} ## Techniques Used 1. Synonym Replacement (40% probability) 2. Random Insertion (15% probability) 3. Random Swap (10% probability) 4. Structure Variation (prefix/suffix) 5. Case Variation ## Quality Controls - Minimum question length: 10 characters - Maximum question length: 500 characters - Minimum diversity score: 0.1 - Duplicate removal via MD5 hashing ## Privacy Measures - Email anonymization - Phone number anonymization - SSN anonymization ## Visualizations - `01_size_comparison.png` - Dataset size comparison - `02_length_distribution.png` - Question length distribution - `03_diversity_distribution.png` - Diversity score distribution """ with open(f'{REPORT_DIR}/synthetic_report.md', 'w') as f: f.write(report) print(f" Report saved to {REPORT_DIR}/synthetic_report.md") # ============================================================================= # MAIN PIPELINE # ============================================================================= def generate_synthetic_data(input_csv, output_csv, sample_size=500, variations=3, min_diversity=0.1): """Main synthetic data generation pipeline.""" print("=" * 50) print("SYNTHETIC DATA GENERATION") print("=" * 50) # Setup setup_directories() # Load data print(f"\n[1/6] Loading {input_csv}...") df = pd.read_csv(input_csv) sample_df = df.sample(n=min(sample_size, len(df)), random_state=42) print(f" Sampled {len(sample_df)} rows") # Generate variations print(f"\n[2/6] Generating variations...") synthetic_data = [] skipped = 0 for _, row in sample_df.iterrows(): question = anonymize(str(row['question'])) sql = anonymize(str(row['sql'])) for _ in range(variations): variation = generate_variation(question) div_score = diversity_score(question, variation) if div_score < min_diversity or not quality_check(variation, sql): skipped += 1 continue synthetic_data.append({ 'question': variation, 'sql': sql, 'original_question': question, 'diversity_score': round(div_score, 3), 'is_synthetic': True }) print(f" Generated: {len(synthetic_data)}, Skipped: {skipped}") # Remove duplicates print(f"\n[3/6] Removing duplicates...") before = len(synthetic_data) synthetic_data = remove_duplicates(synthetic_data) print(f" Removed {before - len(synthetic_data)} duplicates") # Save data print(f"\n[4/6] Saving data...") synthetic_df = pd.DataFrame(synthetic_data) synthetic_df.to_csv(output_csv, index=False) print(f" Saved to {output_csv}") # Calculate stats print(f"\n[5/6] Calculating statistics...") stats = calculate_stats(sample_df, synthetic_df) # Save stats as JSON with open(f'{STATS_DIR}/statistics.json', 'w') as f: json.dump(stats, f, indent=2) print(f" Stats saved to {STATS_DIR}/statistics.json") # Generate visualizations and report print(f"\n[6/6] Creating outputs...") create_visualizations(sample_df, synthetic_df) generate_report(stats) # Summary print("\n" + "=" * 50) print("COMPLETE") print("=" * 50) print(f" Original: {stats['original']['samples']:,} samples") print(f" Synthetic: {stats['synthetic']['samples']:,} samples") print(f" Augmentation: {stats['augmentation_factor']}x") print(f" Avg Diversity: {stats['diversity']['avg']}") return synthetic_df # ============================================================================= # ENTRY POINT # ============================================================================= if __name__ == "__main__": generate_synthetic_data( input_csv="data/train.csv", output_csv="data/synthetic.csv", sample_size=52527, variations=3, min_diversity=0.1 )