Spaces:
Sleeping
Sleeping
File size: 14,121 Bytes
f29ea6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
"""
Synthetic Data Generation for SQL Learning Assistant
Covers:
1. Create synthetic datasets for training/testing
2. Implement data augmentation techniques
3. Ensure diversity and quality of generated data
4. Address privacy and ethical considerations
"""
import pandas as pd
import random
import re
import hashlib
import json
from collections import Counter
from datetime import datetime
import matplotlib.pyplot as plt
import os
import sys
# Add parent directory to path for imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from synthetic.synonyms import SYNONYMS, get_synonym, has_synonym
# =============================================================================
# OUTPUT DIRECTORIES
# =============================================================================
OUTPUT_DIR = "outputs/synthetic"
VIZ_DIR = f"{OUTPUT_DIR}/visualizations"
REPORT_DIR = f"{OUTPUT_DIR}/reports"
STATS_DIR = f"{OUTPUT_DIR}/stats"
def setup_directories():
"""Create output directories."""
for d in [OUTPUT_DIR, VIZ_DIR, REPORT_DIR, STATS_DIR]:
os.makedirs(d, exist_ok=True)
# =============================================================================
# SENTENCE VARIATIONS
# =============================================================================
PREFIXES = ["", "Can you ", "Please ", "I want to ", "I need to ",
"Could you ", "Help me ", "Show me how to "]
SUFFIXES = ["", "?", " please", " for me", " please?"]
# =============================================================================
# AUGMENTATION TECHNIQUES
# =============================================================================
def replace_synonyms(text, prob=0.4):
"""Technique 1: Replace words with synonyms."""
words = text.split()
result = []
for word in words:
clean = re.sub(r'[^\w]', '', word).lower()
if has_synonym(clean) and random.random() < prob:
syn = get_synonym(clean)
result.append(syn if word[-1] not in '.,?!' else syn + word[-1])
else:
result.append(word)
return ' '.join(result)
def random_insertion(text, prob=0.15):
"""Technique 2: Insert contextual words."""
inserts = ["also", "specifically", "exactly", "just", "only"]
words = text.split()
if len(words) > 3 and random.random() < prob:
pos = random.randint(1, len(words) - 1)
words.insert(pos, random.choice(inserts))
return ' '.join(words)
def random_swap(text, prob=0.1):
"""Technique 3: Swap adjacent words."""
words = text.split()
if len(words) > 4 and random.random() < prob:
pos = random.randint(1, len(words) - 3)
words[pos], words[pos + 1] = words[pos + 1], words[pos]
return ' '.join(words)
def structure_variation(text):
"""Technique 4: Add prefixes and suffixes."""
prefix = random.choice(PREFIXES)
suffix = random.choice(SUFFIXES)
if prefix:
text = text[0].lower() + text[1:] if text else text
result = prefix + text + suffix
return result[0].upper() + result[1:] if result else result
def case_variation(text):
"""Technique 5: Vary capitalization."""
r = random.random()
if r < 0.6:
return text[0].upper() + text[1:].lower() if text else text
elif r < 0.85:
return text.lower()
return text
def generate_variation(question):
"""Apply all augmentation techniques."""
variation = question
variation = replace_synonyms(variation)
variation = random_insertion(variation)
variation = random_swap(variation)
variation = structure_variation(variation)
variation = case_variation(variation)
return variation
# =============================================================================
# QUALITY AND DIVERSITY
# =============================================================================
def diversity_score(original, variation):
"""Calculate diversity between original and variation."""
orig_words = set(original.lower().split())
var_words = set(variation.lower().split())
if not orig_words or not var_words:
return 0
intersection = orig_words & var_words
union = orig_words | var_words
return 1 - (len(intersection) / len(union))
def quality_check(question, sql):
"""Check if generated data passes quality standards."""
if not question or len(question.strip()) < 10:
return False
if not sql or len(sql.strip()) < 5:
return False
if not re.search(r'[a-zA-Z]', question):
return False
if len(question) > 500:
return False
return True
def remove_duplicates(data):
"""Remove duplicate entries."""
seen = set()
unique = []
for item in data:
normalized = re.sub(r'[^\w\s]', '', item['question'].lower())
normalized = ' '.join(normalized.split())
h = hashlib.md5(normalized.encode()).hexdigest()
if h not in seen:
seen.add(h)
unique.append(item)
return unique
# =============================================================================
# PRIVACY (ETHICAL CONSIDERATIONS)
# =============================================================================
def anonymize(text):
"""Remove sensitive information."""
text = re.sub(r'\b[\w.-]+@[\w.-]+\.\w+\b', '[EMAIL]', text)
text = re.sub(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', '[PHONE]', text)
text = re.sub(r'\b\d{3}-\d{2}-\d{4}\b', '[SSN]', text)
return text
# =============================================================================
# STATISTICS
# =============================================================================
def calculate_stats(original_df, synthetic_df):
"""Calculate dataset statistics."""
def get_stats(df, name):
questions = df['question'].tolist()
lengths = [len(q.split()) for q in questions]
return {
'name': name,
'samples': len(df),
'avg_length': round(sum(lengths) / len(lengths), 2),
'min_length': min(lengths),
'max_length': max(lengths),
'unique_words': len(set(' '.join(questions).lower().split()))
}
orig_stats = get_stats(original_df, 'Original')
synth_stats = get_stats(synthetic_df, 'Synthetic')
diversity_scores = synthetic_df['diversity_score'].tolist()
diversity_stats = {
'avg': round(sum(diversity_scores) / len(diversity_scores), 4),
'min': round(min(diversity_scores), 4),
'max': round(max(diversity_scores), 4)
}
return {
'original': orig_stats,
'synthetic': synth_stats,
'diversity': diversity_stats,
'augmentation_factor': round(len(synthetic_df) / len(original_df), 2)
}
# =============================================================================
# VISUALIZATIONS
# =============================================================================
def create_visualizations(original_df, synthetic_df):
"""Create and save visualizations."""
plt.style.use('seaborn-v0_8-whitegrid')
# 1. Dataset Size Comparison
fig, ax = plt.subplots(figsize=(8, 5))
sizes = [len(original_df), len(synthetic_df)]
bars = ax.bar(['Original', 'Synthetic'], sizes, color=['#3498db', '#2ecc71'])
for bar, size in zip(bars, sizes):
ax.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 20,
f'{size:,}', ha='center', fontweight='bold')
ax.set_ylabel('Samples')
ax.set_title('Dataset Size Comparison')
plt.savefig(f'{VIZ_DIR}/01_size_comparison.png', dpi=150, bbox_inches='tight')
plt.close()
# 2. Question Length Distribution
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
orig_len = [len(q.split()) for q in original_df['question']]
synth_len = [len(q.split()) for q in synthetic_df['question']]
axes[0].hist(orig_len, bins=25, color='#3498db', alpha=0.7)
axes[0].set_title('Original - Question Length')
axes[0].set_xlabel('Words')
axes[1].hist(synth_len, bins=25, color='#2ecc71', alpha=0.7)
axes[1].set_title('Synthetic - Question Length')
axes[1].set_xlabel('Words')
plt.tight_layout()
plt.savefig(f'{VIZ_DIR}/02_length_distribution.png', dpi=150, bbox_inches='tight')
plt.close()
# 3. Diversity Score Distribution
fig, ax = plt.subplots(figsize=(8, 5))
ax.hist(synthetic_df['diversity_score'], bins=20, color='#9b59b6', alpha=0.7)
ax.axvline(synthetic_df['diversity_score'].mean(), color='red', linestyle='--',
label=f"Mean: {synthetic_df['diversity_score'].mean():.3f}")
ax.set_xlabel('Diversity Score')
ax.set_ylabel('Frequency')
ax.set_title('Diversity Score Distribution')
ax.legend()
plt.savefig(f'{VIZ_DIR}/03_diversity_distribution.png', dpi=150, bbox_inches='tight')
plt.close()
print(f" Visualizations saved to {VIZ_DIR}/")
# =============================================================================
# REPORT GENERATION
# =============================================================================
def generate_report(stats):
"""Generate markdown report."""
report = f"""# Synthetic Data Generation Report
**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
## Dataset Statistics
| Metric | Original | Synthetic |
|--------|----------|-----------|
| Samples | {stats['original']['samples']:,} | {stats['synthetic']['samples']:,} |
| Avg Length | {stats['original']['avg_length']} | {stats['synthetic']['avg_length']} |
| Min Length | {stats['original']['min_length']} | {stats['synthetic']['min_length']} |
| Max Length | {stats['original']['max_length']} | {stats['synthetic']['max_length']} |
| Unique Words | {stats['original']['unique_words']:,} | {stats['synthetic']['unique_words']:,} |
## Augmentation Results
- **Augmentation Factor:** {stats['augmentation_factor']}x
- **Avg Diversity Score:** {stats['diversity']['avg']}
- **Min Diversity Score:** {stats['diversity']['min']}
- **Max Diversity Score:** {stats['diversity']['max']}
## Techniques Used
1. Synonym Replacement (40% probability)
2. Random Insertion (15% probability)
3. Random Swap (10% probability)
4. Structure Variation (prefix/suffix)
5. Case Variation
## Quality Controls
- Minimum question length: 10 characters
- Maximum question length: 500 characters
- Minimum diversity score: 0.1
- Duplicate removal via MD5 hashing
## Privacy Measures
- Email anonymization
- Phone number anonymization
- SSN anonymization
## Visualizations
- `01_size_comparison.png` - Dataset size comparison
- `02_length_distribution.png` - Question length distribution
- `03_diversity_distribution.png` - Diversity score distribution
"""
with open(f'{REPORT_DIR}/synthetic_report.md', 'w') as f:
f.write(report)
print(f" Report saved to {REPORT_DIR}/synthetic_report.md")
# =============================================================================
# MAIN PIPELINE
# =============================================================================
def generate_synthetic_data(input_csv, output_csv, sample_size=500, variations=3, min_diversity=0.1):
"""Main synthetic data generation pipeline."""
print("=" * 50)
print("SYNTHETIC DATA GENERATION")
print("=" * 50)
# Setup
setup_directories()
# Load data
print(f"\n[1/6] Loading {input_csv}...")
df = pd.read_csv(input_csv)
sample_df = df.sample(n=min(sample_size, len(df)), random_state=42)
print(f" Sampled {len(sample_df)} rows")
# Generate variations
print(f"\n[2/6] Generating variations...")
synthetic_data = []
skipped = 0
for _, row in sample_df.iterrows():
question = anonymize(str(row['question']))
sql = anonymize(str(row['sql']))
for _ in range(variations):
variation = generate_variation(question)
div_score = diversity_score(question, variation)
if div_score < min_diversity or not quality_check(variation, sql):
skipped += 1
continue
synthetic_data.append({
'question': variation,
'sql': sql,
'original_question': question,
'diversity_score': round(div_score, 3),
'is_synthetic': True
})
print(f" Generated: {len(synthetic_data)}, Skipped: {skipped}")
# Remove duplicates
print(f"\n[3/6] Removing duplicates...")
before = len(synthetic_data)
synthetic_data = remove_duplicates(synthetic_data)
print(f" Removed {before - len(synthetic_data)} duplicates")
# Save data
print(f"\n[4/6] Saving data...")
synthetic_df = pd.DataFrame(synthetic_data)
synthetic_df.to_csv(output_csv, index=False)
print(f" Saved to {output_csv}")
# Calculate stats
print(f"\n[5/6] Calculating statistics...")
stats = calculate_stats(sample_df, synthetic_df)
# Save stats as JSON
with open(f'{STATS_DIR}/statistics.json', 'w') as f:
json.dump(stats, f, indent=2)
print(f" Stats saved to {STATS_DIR}/statistics.json")
# Generate visualizations and report
print(f"\n[6/6] Creating outputs...")
create_visualizations(sample_df, synthetic_df)
generate_report(stats)
# Summary
print("\n" + "=" * 50)
print("COMPLETE")
print("=" * 50)
print(f" Original: {stats['original']['samples']:,} samples")
print(f" Synthetic: {stats['synthetic']['samples']:,} samples")
print(f" Augmentation: {stats['augmentation_factor']}x")
print(f" Avg Diversity: {stats['diversity']['avg']}")
return synthetic_df
# =============================================================================
# ENTRY POINT
# =============================================================================
if __name__ == "__main__":
generate_synthetic_data(
input_csv="data/train.csv",
output_csv="data/synthetic.csv",
sample_size=52527,
variations=3,
min_diversity=0.1
) |