File size: 12,908 Bytes
f29ea6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
"""
Knowledge Base Builder for RAG System
Includes: Chunking Strategies, Vector Storage
"""

import os
import pandas as pd
import chromadb
import json
import re
from datetime import datetime
import sys

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from rag.embeddings import get_embeddings_batch

# =============================================================================
# CONFIGURATION
# =============================================================================

CHROMA_DIR = "chromadb_data"
COLLECTION_NAME = "sql_knowledge"
OUTPUT_DIR = "outputs/rag"
STATS_DIR = f"{OUTPUT_DIR}/stats"
REPORT_DIR = f"{OUTPUT_DIR}/reports"

def setup_directories():
    """Create necessary directories."""
    for d in [CHROMA_DIR, OUTPUT_DIR, STATS_DIR, REPORT_DIR]:
        os.makedirs(d, exist_ok=True)

# =============================================================================
# CHUNKING STRATEGIES
# =============================================================================

def chunk_by_sql_clauses(sql):
    """
    Chunking Strategy 1: Split SQL by clauses.
    Identifies SELECT, FROM, WHERE, GROUP BY, ORDER BY, etc.
    """
    clauses = []
    
    # Common SQL clause patterns
    patterns = [
        (r'\bSELECT\b.*?(?=\bFROM\b|$)', 'SELECT'),
        (r'\bFROM\b.*?(?=\bWHERE\b|\bGROUP\b|\bORDER\b|\bLIMIT\b|$)', 'FROM'),
        (r'\bWHERE\b.*?(?=\bGROUP\b|\bORDER\b|\bLIMIT\b|$)', 'WHERE'),
        (r'\bGROUP BY\b.*?(?=\bHAVING\b|\bORDER\b|\bLIMIT\b|$)', 'GROUP BY'),
        (r'\bHAVING\b.*?(?=\bORDER\b|\bLIMIT\b|$)', 'HAVING'),
        (r'\bORDER BY\b.*?(?=\bLIMIT\b|$)', 'ORDER BY'),
        (r'\bLIMIT\b.*', 'LIMIT'),
    ]
    
    sql_upper = sql.upper()
    for pattern, clause_name in patterns:
        match = re.search(pattern, sql_upper, re.IGNORECASE | re.DOTALL)
        if match:
            clauses.append(clause_name)
    
    return clauses

def chunk_by_complexity(question, sql):
    """
    Chunking Strategy 2: Categorize by query complexity.
    """
    sql_upper = sql.upper()
    
    # Determine complexity level
    complexity_score = 0
    
    # Check for complex features
    if 'JOIN' in sql_upper:
        complexity_score += 2
    if 'SUBQUERY' in sql_upper or sql_upper.count('SELECT') > 1:
        complexity_score += 2
    if 'GROUP BY' in sql_upper:
        complexity_score += 1
    if 'HAVING' in sql_upper:
        complexity_score += 1
    if 'ORDER BY' in sql_upper:
        complexity_score += 1
    if any(agg in sql_upper for agg in ['COUNT', 'SUM', 'AVG', 'MAX', 'MIN']):
        complexity_score += 1
    if 'UNION' in sql_upper:
        complexity_score += 2
    
    # Categorize
    if complexity_score <= 1:
        return 'simple'
    elif complexity_score <= 3:
        return 'intermediate'
    else:
        return 'complex'

def extract_sql_keywords(sql):
    """
    Chunking Strategy 3: Extract SQL keywords for metadata.
    """
    sql_upper = sql.upper()
    
    keywords = []
    
    # Operations
    if 'SELECT' in sql_upper:
        keywords.append('SELECT')
    if 'INSERT' in sql_upper:
        keywords.append('INSERT')
    if 'UPDATE' in sql_upper:
        keywords.append('UPDATE')
    if 'DELETE' in sql_upper:
        keywords.append('DELETE')
    
    # Joins
    if 'INNER JOIN' in sql_upper:
        keywords.append('INNER JOIN')
    elif 'LEFT JOIN' in sql_upper:
        keywords.append('LEFT JOIN')
    elif 'RIGHT JOIN' in sql_upper:
        keywords.append('RIGHT JOIN')
    elif 'JOIN' in sql_upper:
        keywords.append('JOIN')
    
    # Clauses
    for clause in ['WHERE', 'GROUP BY', 'HAVING', 'ORDER BY', 'LIMIT']:
        if clause in sql_upper:
            keywords.append(clause)
    
    # Aggregations
    for agg in ['COUNT', 'SUM', 'AVG', 'MAX', 'MIN']:
        if agg in sql_upper:
            keywords.append(agg)
    
    # Subqueries
    if sql_upper.count('SELECT') > 1:
        keywords.append('SUBQUERY')
    
    return keywords

def calculate_chunk_size(text):
    """Calculate appropriate chunk size category."""
    word_count = len(text.split())
    
    if word_count <= 10:
        return 'short'
    elif word_count <= 25:
        return 'medium'
    else:
        return 'long'

# =============================================================================
# DOCUMENT PREPARATION WITH CHUNKING
# =============================================================================

def prepare_documents_with_chunking(datasets):
    """
    Prepare documents with chunking metadata.
    Each document gets rich metadata for filtering/ranking.
    """
    documents = []
    metadatas = []
    ids = []
    
    idx = 0
    for source, df in datasets.items():
        for _, row in df.iterrows():
            question = str(row['question'])
            sql = str(row['sql'])
            
            # Apply chunking strategies
            sql_clauses = chunk_by_sql_clauses(sql)
            complexity = chunk_by_complexity(question, sql)
            keywords = extract_sql_keywords(sql)
            q_size = calculate_chunk_size(question)
            sql_size = calculate_chunk_size(sql)
            
            # Create rich metadata
            metadata = {
                'sql': sql,
                'source': source,
                'question': question,
                # Chunking metadata
                'complexity': complexity,
                'sql_clauses': ','.join(sql_clauses),
                'keywords': ','.join(keywords),
                'question_size': q_size,
                'sql_size': sql_size,
                'keyword_count': len(keywords),
                'clause_count': len(sql_clauses),
            }
            
            documents.append(question)
            metadatas.append(metadata)
            ids.append(f"doc_{idx}")
            idx += 1
    
    return documents, metadatas, ids

# =============================================================================
# CHROMADB CLIENT
# =============================================================================

def get_chroma_client():
    """Get ChromaDB persistent client."""
    return chromadb.PersistentClient(path=CHROMA_DIR)

def get_or_create_collection(client):
    """Get or create the SQL knowledge collection."""
    return client.get_or_create_collection(
        name=COLLECTION_NAME,
        metadata={"description": "SQL question-answer pairs with chunking metadata"}
    )

# =============================================================================
# DATA LOADING
# =============================================================================

def load_datasets(data_dir="data"):
    """Load ALL CSV datasets."""
    datasets = {}
    
    files = {
        'train': 'train.csv',
        'validation': 'validation.csv',
        'test': 'test.csv'
        # 'synthetic': 'synthetic.csv'
    }
    
    for name, filename in files.items():
        filepath = os.path.join(data_dir, filename)
        if os.path.exists(filepath):
            df = pd.read_csv(filepath)
            datasets[name] = df
            print(f"  Loaded {name}: {len(df):,} rows")
        else:
            print(f"  Skipped {name}: file not found")
    
    return datasets

# =============================================================================
# KNOWLEDGE BASE BUILDING
# =============================================================================

def build_knowledge_base(data_dir="data", batch_size=500):
    """Build knowledge base with chunking strategies."""
    
    print("=" * 50)
    print("BUILDING RAG KNOWLEDGE BASE")
    print("With Chunking Strategies")
    print("=" * 50)
    
    setup_directories()
    
    # Step 1: Load data
    print(f"\n[1/5] Loading datasets...")
    datasets = load_datasets(data_dir)
    
    if not datasets:
        print("ERROR: No datasets found!")
        return None
    
    total_rows = sum(len(df) for df in datasets.values())
    print(f"  Total rows: {total_rows:,}")
    
    # Step 2: Prepare documents with chunking
    print(f"\n[2/5] Applying chunking strategies...")
    documents, metadatas, ids = prepare_documents_with_chunking(datasets)
    print(f"  Total documents: {len(documents):,}")
    
    # Show chunking stats
    complexities = [m['complexity'] for m in metadatas]
    print(f"  Complexity distribution:")
    print(f"    Simple: {complexities.count('simple'):,}")
    print(f"    Intermediate: {complexities.count('intermediate'):,}")
    print(f"    Complex: {complexities.count('complex'):,}")
    
    # Step 3: Initialize ChromaDB
    print(f"\n[3/5] Initializing ChromaDB...")
    client = get_chroma_client()
    
    try:
        client.delete_collection(COLLECTION_NAME)
        print("  Deleted existing collection")
    except:
        pass
    
    collection = get_or_create_collection(client)
    print(f"  Collection: {COLLECTION_NAME}")
    
    # Step 4: Generate embeddings and store
    print(f"\n[4/5] Generating embeddings...")
    
    total_added = 0
    
    for i in range(0, len(documents), batch_size):
        batch_docs = documents[i:i + batch_size]
        batch_meta = metadatas[i:i + batch_size]
        batch_ids = ids[i:i + batch_size]
        
        embeddings = get_embeddings_batch(batch_docs)
        
        if embeddings and embeddings[0] is not None:
            collection.add(
                documents=batch_docs,
                metadatas=batch_meta,
                ids=batch_ids,
                embeddings=embeddings
            )
            total_added += len(batch_docs)
        
        progress = min(i + batch_size, len(documents))
        pct = (progress / len(documents)) * 100
        print(f"  Progress: {progress:,}/{len(documents):,} ({pct:.1f}%)")
    
    # Step 5: Save statistics
    print(f"\n[5/5] Saving statistics...")
    stats = {
        'total_documents': total_added,
        'sources': {name: len(df) for name, df in datasets.items()},
        'collection_name': COLLECTION_NAME,
        'embedding_model': 'all-MiniLM-L6-v2',
        'chunking_strategies': [
            'sql_clause_extraction',
            'complexity_classification',
            'keyword_extraction',
            'size_categorization'
        ],
        'complexity_distribution': {
            'simple': complexities.count('simple'),
            'intermediate': complexities.count('intermediate'),
            'complex': complexities.count('complex')
        },
        'created_at': datetime.now().isoformat()
    }
    
    with open(f'{STATS_DIR}/knowledge_base_stats.json', 'w') as f:
        json.dump(stats, f, indent=2)
    
    generate_report(stats)
    
    print("\n" + "=" * 50)
    print("COMPLETE")
    print("=" * 50)
    print(f"  Documents indexed: {total_added:,}")
    print(f"  Storage: {CHROMA_DIR}/")
    
    return collection

# =============================================================================
# REPORT GENERATION
# =============================================================================

def generate_report(stats):
    """Generate knowledge base report."""
    
    report = f"""# RAG Knowledge Base Report

**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}

## Overview

| Metric | Value |
|--------|-------|
| Total Documents | {stats['total_documents']:,} |
| Collection Name | {stats['collection_name']} |
| Embedding Model | {stats['embedding_model']} |

## Data Sources

| Source | Documents |
|--------|-----------|
"""
    
    for source, count in stats['sources'].items():
        report += f"| {source} | {count:,} |\n"
    
    report += f"""
## Chunking Strategies

1. **SQL Clause Extraction**: Identifies SELECT, FROM, WHERE, GROUP BY, etc.
2. **Complexity Classification**: Categorizes as simple/intermediate/complex
3. **Keyword Extraction**: Extracts SQL operations (JOIN, COUNT, etc.)
4. **Size Categorization**: Classifies question/SQL length

## Complexity Distribution

| Level | Count |
|-------|-------|
| Simple | {stats['complexity_distribution']['simple']:,} |
| Intermediate | {stats['complexity_distribution']['intermediate']:,} |
| Complex | {stats['complexity_distribution']['complex']:,} |

## Document Metadata Structure

Each document contains:
- `sql`: The SQL query
- `source`: Origin dataset
- `question`: Original question
- `complexity`: simple/intermediate/complex
- `sql_clauses`: Comma-separated clauses
- `keywords`: SQL keywords found
- `question_size`: short/medium/long
- `sql_size`: short/medium/long
"""
    
    with open(f'{REPORT_DIR}/knowledge_base_report.md', 'w') as f:
        f.write(report)
    
    print(f"  Report saved to {REPORT_DIR}/")

# =============================================================================
# ENTRY POINT
# =============================================================================

if __name__ == "__main__":
    build_knowledge_base(data_dir="data", batch_size=500)