File size: 6,382 Bytes
f29ea6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
Fine-Tuning Script for SQL Generation Model
Uses LoRA for efficient fine-tuning.
"""

import os
import json
import torch
from datetime import datetime
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TrainingArguments,
    Trainer,
    DataCollatorForLanguageModeling
)
from peft import LoraConfig, get_peft_model, TaskType

# =============================================================================
# CONFIGURATION
# =============================================================================

MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
OUTPUT_DIR = "outputs/finetuning"
CHECKPOINT_DIR = f"{OUTPUT_DIR}/checkpoints"
LOGS_DIR = f"{OUTPUT_DIR}/logs"

# Training config (optimized for RTX 4070)
TRAINING_CONFIG = {
    'num_epochs': 3,
    'batch_size': 8,
    'learning_rate': 2e-4,
    'max_length': 256,
    'warmup_steps': 100,
    'logging_steps': 50,
    'save_steps': 500,
    'gradient_accumulation_steps': 2,
}

# LoRA config
LORA_CONFIG = {
    'r': 16,
    'lora_alpha': 32,
    'lora_dropout': 0.1,
    'target_modules': ['q_proj', 'v_proj', 'k_proj', 'o_proj']
}

def setup_directories():
    for d in [OUTPUT_DIR, CHECKPOINT_DIR, LOGS_DIR]:
        os.makedirs(d, exist_ok=True)

# =============================================================================
# TRAINING FUNCTIONS
# =============================================================================

def load_data():
    """Load prepared training data."""
    train_file = f"{OUTPUT_DIR}/train.jsonl"
    val_file = f"{OUTPUT_DIR}/val.jsonl"
    
    if not os.path.exists(train_file):
        raise FileNotFoundError("Run prepare_data.py first!")
    
    return load_dataset('json', data_files={
        'train': train_file,
        'validation': val_file
    })

def setup_model():
    """Load model and tokenizer with LoRA."""
    print(f"Loading: {MODEL_NAME}")
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "right"
    
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        torch_dtype=torch.float16,
        device_map="auto"
    )
    
    lora_config = LoraConfig(
        task_type=TaskType.CAUSAL_LM,
        r=LORA_CONFIG['r'],
        lora_alpha=LORA_CONFIG['lora_alpha'],
        lora_dropout=LORA_CONFIG['lora_dropout'],
        target_modules=LORA_CONFIG['target_modules']
    )
    
    model = get_peft_model(model, lora_config)
    model.print_trainable_parameters()
    
    return model, tokenizer

def tokenize(examples, tokenizer):
    """Tokenize examples."""
    return tokenizer(
        examples['text'],
        truncation=True,
        padding='max_length',
        max_length=TRAINING_CONFIG['max_length']
    )

def train(model, tokenizer, dataset):
    """Train the model."""
    
    # Tokenize
    print("Tokenizing...")
    tokenized_train = dataset['train'].map(
        lambda x: tokenize(x, tokenizer),
        batched=True,
        remove_columns=dataset['train'].column_names
    )
    tokenized_val = dataset['validation'].map(
        lambda x: tokenize(x, tokenizer),
        batched=True,
        remove_columns=dataset['validation'].column_names
    )
    
    # Training args
    training_args = TrainingArguments(
        output_dir=CHECKPOINT_DIR,
        num_train_epochs=TRAINING_CONFIG['num_epochs'],
        per_device_train_batch_size=TRAINING_CONFIG['batch_size'],
        per_device_eval_batch_size=TRAINING_CONFIG['batch_size'],
        learning_rate=TRAINING_CONFIG['learning_rate'],
        warmup_steps=TRAINING_CONFIG['warmup_steps'],
        logging_steps=TRAINING_CONFIG['logging_steps'],
        save_steps=TRAINING_CONFIG['save_steps'],
        gradient_accumulation_steps=TRAINING_CONFIG['gradient_accumulation_steps'],
        eval_strategy="steps",
        eval_steps=TRAINING_CONFIG['save_steps'],
        save_total_limit=2,
        fp16=True,
        report_to="none",
        logging_dir=LOGS_DIR,
        dataloader_pin_memory=False,
    )
    
    # Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_train,
        eval_dataset=tokenized_val,
        data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
    )
    
    # Train
    print(f"\nTraining: {len(tokenized_train)} samples, {TRAINING_CONFIG['num_epochs']} epochs")
    result = trainer.train()
    
    # Save
    print("\nSaving model...")
    trainer.save_model(f"{CHECKPOINT_DIR}/final")
    tokenizer.save_pretrained(f"{CHECKPOINT_DIR}/final")
    
    # Stats
    stats = {
        'train_loss': result.training_loss,
        'runtime_seconds': result.metrics['train_runtime'],
        'samples_per_second': result.metrics['train_samples_per_second'],
        'epochs': TRAINING_CONFIG['num_epochs'],
        'total_steps': result.global_step,
        'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU',
        'completed_at': datetime.now().isoformat()
    }
    
    with open(f"{CHECKPOINT_DIR}/training_stats.json", 'w') as f:
        json.dump(stats, f, indent=2)
    
    return stats

# =============================================================================
# MAIN
# =============================================================================

def run_finetuning():
    """Main function."""
    
    print("=" * 60)
    print("FINE-TUNING SQL MODEL")
    if torch.cuda.is_available():
        print(f"GPU: {torch.cuda.get_device_name(0)}")
    else:
        print("GPU: Not available (using CPU)")
    print("=" * 60)
    
    setup_directories()
    
    # Load data
    print("\n[1/3] Loading data...")
    dataset = load_data()
    print(f"  Train: {len(dataset['train']):,}")
    print(f"  Val: {len(dataset['validation']):,}")
    
    # Setup model
    print("\n[2/3] Setting up model...")
    model, tokenizer = setup_model()
    
    # Train
    print("\n[3/3] Training...")
    stats = train(model, tokenizer, dataset)
    
    # Done
    print("\n" + "=" * 60)
    print("TRAINING COMPLETE")
    print("=" * 60)
    print(f"  Loss: {stats['train_loss']:.4f}")
    print(f"  Time: {stats['runtime_seconds']/60:.1f} min")
    print(f"  Model: {CHECKPOINT_DIR}/final")
    
    return stats

if __name__ == "__main__":
    run_finetuning()