Spaces:
Sleeping
Sleeping
File size: 6,382 Bytes
f29ea6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
"""
Fine-Tuning Script for SQL Generation Model
Uses LoRA for efficient fine-tuning.
"""
import os
import json
import torch
from datetime import datetime
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from peft import LoraConfig, get_peft_model, TaskType
# =============================================================================
# CONFIGURATION
# =============================================================================
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
OUTPUT_DIR = "outputs/finetuning"
CHECKPOINT_DIR = f"{OUTPUT_DIR}/checkpoints"
LOGS_DIR = f"{OUTPUT_DIR}/logs"
# Training config (optimized for RTX 4070)
TRAINING_CONFIG = {
'num_epochs': 3,
'batch_size': 8,
'learning_rate': 2e-4,
'max_length': 256,
'warmup_steps': 100,
'logging_steps': 50,
'save_steps': 500,
'gradient_accumulation_steps': 2,
}
# LoRA config
LORA_CONFIG = {
'r': 16,
'lora_alpha': 32,
'lora_dropout': 0.1,
'target_modules': ['q_proj', 'v_proj', 'k_proj', 'o_proj']
}
def setup_directories():
for d in [OUTPUT_DIR, CHECKPOINT_DIR, LOGS_DIR]:
os.makedirs(d, exist_ok=True)
# =============================================================================
# TRAINING FUNCTIONS
# =============================================================================
def load_data():
"""Load prepared training data."""
train_file = f"{OUTPUT_DIR}/train.jsonl"
val_file = f"{OUTPUT_DIR}/val.jsonl"
if not os.path.exists(train_file):
raise FileNotFoundError("Run prepare_data.py first!")
return load_dataset('json', data_files={
'train': train_file,
'validation': val_file
})
def setup_model():
"""Load model and tokenizer with LoRA."""
print(f"Loading: {MODEL_NAME}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto"
)
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=LORA_CONFIG['r'],
lora_alpha=LORA_CONFIG['lora_alpha'],
lora_dropout=LORA_CONFIG['lora_dropout'],
target_modules=LORA_CONFIG['target_modules']
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, tokenizer
def tokenize(examples, tokenizer):
"""Tokenize examples."""
return tokenizer(
examples['text'],
truncation=True,
padding='max_length',
max_length=TRAINING_CONFIG['max_length']
)
def train(model, tokenizer, dataset):
"""Train the model."""
# Tokenize
print("Tokenizing...")
tokenized_train = dataset['train'].map(
lambda x: tokenize(x, tokenizer),
batched=True,
remove_columns=dataset['train'].column_names
)
tokenized_val = dataset['validation'].map(
lambda x: tokenize(x, tokenizer),
batched=True,
remove_columns=dataset['validation'].column_names
)
# Training args
training_args = TrainingArguments(
output_dir=CHECKPOINT_DIR,
num_train_epochs=TRAINING_CONFIG['num_epochs'],
per_device_train_batch_size=TRAINING_CONFIG['batch_size'],
per_device_eval_batch_size=TRAINING_CONFIG['batch_size'],
learning_rate=TRAINING_CONFIG['learning_rate'],
warmup_steps=TRAINING_CONFIG['warmup_steps'],
logging_steps=TRAINING_CONFIG['logging_steps'],
save_steps=TRAINING_CONFIG['save_steps'],
gradient_accumulation_steps=TRAINING_CONFIG['gradient_accumulation_steps'],
eval_strategy="steps",
eval_steps=TRAINING_CONFIG['save_steps'],
save_total_limit=2,
fp16=True,
report_to="none",
logging_dir=LOGS_DIR,
dataloader_pin_memory=False,
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_val,
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
)
# Train
print(f"\nTraining: {len(tokenized_train)} samples, {TRAINING_CONFIG['num_epochs']} epochs")
result = trainer.train()
# Save
print("\nSaving model...")
trainer.save_model(f"{CHECKPOINT_DIR}/final")
tokenizer.save_pretrained(f"{CHECKPOINT_DIR}/final")
# Stats
stats = {
'train_loss': result.training_loss,
'runtime_seconds': result.metrics['train_runtime'],
'samples_per_second': result.metrics['train_samples_per_second'],
'epochs': TRAINING_CONFIG['num_epochs'],
'total_steps': result.global_step,
'gpu': torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU',
'completed_at': datetime.now().isoformat()
}
with open(f"{CHECKPOINT_DIR}/training_stats.json", 'w') as f:
json.dump(stats, f, indent=2)
return stats
# =============================================================================
# MAIN
# =============================================================================
def run_finetuning():
"""Main function."""
print("=" * 60)
print("FINE-TUNING SQL MODEL")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
else:
print("GPU: Not available (using CPU)")
print("=" * 60)
setup_directories()
# Load data
print("\n[1/3] Loading data...")
dataset = load_data()
print(f" Train: {len(dataset['train']):,}")
print(f" Val: {len(dataset['validation']):,}")
# Setup model
print("\n[2/3] Setting up model...")
model, tokenizer = setup_model()
# Train
print("\n[3/3] Training...")
stats = train(model, tokenizer, dataset)
# Done
print("\n" + "=" * 60)
print("TRAINING COMPLETE")
print("=" * 60)
print(f" Loss: {stats['train_loss']:.4f}")
print(f" Time: {stats['runtime_seconds']/60:.1f} min")
print(f" Model: {CHECKPOINT_DIR}/final")
return stats
if __name__ == "__main__":
run_finetuning() |