Spaces:
Sleeping
Sleeping
File size: 19,664 Bytes
f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c c177f34 f29ea6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
"""
Streamlit App for SQL Learning Assistant
Eager Loading - Load everything at startup
"""
import streamlit as st
import os
import sys
from dotenv import load_dotenv
# Load environment variables FIRST
load_dotenv()
# Add parent directory
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# =============================================================================
# PAGE CONFIG - MUST BE FIRST STREAMLIT COMMAND
# =============================================================================
st.set_page_config(
page_title="SQL Learning Assistant",
page_icon="β‘",
layout="wide",
initial_sidebar_state="expanded"
)
# =============================================================================
# LOAD ALL COMPONENTS AT STARTUP (EAGER LOADING)
# =============================================================================
@st.cache_resource(show_spinner=True)
def load_all_components():
"""Load all components at startup."""
components = {
'retriever': None,
'model': None,
'prompt_builder': None,
'gemini': None
}
# 1. Load ChromaDB first
print("=" * 50)
print("LOADING ALL COMPONENTS AT STARTUP")
print("=" * 50)
chromadb_path = "chromadb_data"
hf_chromadb_id = os.getenv("HF_CHROMADB_ID")
# Check if ChromaDB has actual files
has_files = False
if os.path.exists(chromadb_path):
local_files = os.listdir(chromadb_path) if os.path.isdir(chromadb_path) else []
has_files = any('chroma' in f.lower() or 'sqlite' in f.lower() for f in local_files) or len(local_files) > 2
if not has_files and hf_chromadb_id:
print(f"βοΈ Downloading ChromaDB from HuggingFace: {hf_chromadb_id}")
from huggingface_hub import snapshot_download
os.makedirs(chromadb_path, exist_ok=True)
snapshot_download(repo_id=hf_chromadb_id, repo_type="dataset", local_dir=chromadb_path)
print("β ChromaDB downloaded!")
# 2. Load RAG Retriever
try:
print("Loading RAG Retriever...")
from rag.retriever import SQLRetriever
components['retriever'] = SQLRetriever()
print("β RAG Retriever loaded")
except Exception as e:
print(f"β RAG error: {e}")
# 3. Load Fine-tuned Model
try:
print("Loading Fine-tuned Model...")
from finetuning.inference import SQLGenerator
components['model'] = SQLGenerator()
print("β Fine-tuned Model loaded")
except Exception as e:
print(f"β Model error: {e}")
# 4. Load Prompt Builder
try:
print("Loading Prompt Builder...")
from prompts.prompt_builder import PromptBuilder
components['prompt_builder'] = PromptBuilder()
print("β Prompt Builder loaded")
except Exception as e:
print(f"β Prompt Builder error: {e}")
# 5. Load Gemini
try:
print("Loading Gemini...")
from pipeline.integrated import GeminiClient, GEMINI_KEYS
if GEMINI_KEYS:
components['gemini'] = GeminiClient()
print("β Gemini loaded")
else:
print("β οΈ No Gemini API keys found")
except Exception as e:
print(f"β Gemini error: {e}")
print("=" * 50)
print("ALL COMPONENTS LOADED")
print("=" * 50)
return components
# =============================================================================
# LOAD COMPONENTS NOW (AT STARTUP)
# =============================================================================
with st.spinner("π Loading SQL Learning Assistant... Please wait..."):
COMPONENTS = load_all_components()
retriever = COMPONENTS['retriever']
model = COMPONENTS['model']
prompt_builder = COMPONENTS['prompt_builder']
gemini = COMPONENTS['gemini']
# =============================================================================
# HELPER FUNCTION TO RUN PIPELINE
# =============================================================================
def run_pipeline(question, num_examples=3):
"""Run the full pipeline using pre-loaded components."""
result = {
'question': question,
'success': False,
'steps': {}
}
# Step 1: RAG
rag_context = ""
examples = []
if retriever:
try:
examples = retriever.retrieve(question, top_k=num_examples)
rag_context = "Similar SQL examples:\n\n"
for i, r in enumerate(examples, 1):
rag_context += f"Example {i}:\nQuestion: {r['question']}\nSQL: {r['sql']}\n\n"
except Exception as e:
st.warning(f"RAG error: {e}")
result['steps']['rag'] = {'examples': examples, 'num_examples': len(examples), 'context': rag_context}
# Step 2: Prompt
prompt = ""
if prompt_builder:
try:
prompt_result = prompt_builder.build_prompt(question=question, rag_context=rag_context)
if prompt_result['success']:
prompt = prompt_result['prompt']
except:
pass
if not prompt:
prompt = f"{rag_context}\nQuestion: {question}\n\nSQL:"
result['steps']['prompt'] = {'prompt': prompt, 'length': len(prompt)}
# Step 3: Fine-tuned Model
finetuned_sql = None
if model:
try:
finetuned_sql = model.generate(question, rag_context)
except Exception as e:
st.warning(f"Model error: {e}")
result['steps']['finetuned'] = {'sql': finetuned_sql, 'error': None if finetuned_sql else 'Model not available'}
if not finetuned_sql:
return result
# Step 4: Gemini Enhancement
enhanced_sql = finetuned_sql
if gemini:
try:
enhance_prompt = f"""You are an SQL expert. Review and enhance this SQL query.
Original Question: {question}
Generated SQL (by a smaller model):
{finetuned_sql}
Rules:
- If the SQL is correct, return it unchanged
- If it needs fixes, return the corrected version
- Return ONLY the SQL query, no explanations
Enhanced SQL:"""
response, error = gemini.generate(enhance_prompt)
if response and not error:
enhanced_sql = response.strip()
if enhanced_sql.startswith("```"):
lines = enhanced_sql.split("\n")
enhanced_sql = "\n".join(lines[1:-1] if lines[-1] == "```" else lines[1:])
if enhanced_sql.lower().startswith("sql"):
enhanced_sql = enhanced_sql[3:].strip()
except Exception as e:
st.warning(f"Gemini enhance error: {e}")
result['steps']['gemini_enhance'] = {'sql': enhanced_sql, 'info': {'enhanced': enhanced_sql != finetuned_sql}}
result['final_sql'] = enhanced_sql
# Step 5: Explanation
explanation = ""
if gemini:
try:
explain_prompt = f"Explain this SQL query in simple terms (2-3 sentences):\n\nSQL: {enhanced_sql}"
response, error = gemini.generate(explain_prompt)
if response and not error:
explanation = response.strip()
except:
pass
result['explanation'] = explanation
result['success'] = True
return result
# =============================================================================
# CUSTOM CSS
# =============================================================================
st.markdown("""
<style>
.stApp {
background: linear-gradient(135deg, #0f0f23 0%, #1a1a2e 50%, #16213e 100%);
}
.main-header {
font-size: 3rem;
font-weight: 800;
background: linear-gradient(120deg, #00d4ff, #7c3aed, #f472b6);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
margin-bottom: 0.5rem;
}
.sub-header {
font-size: 1.1rem;
color: #94a3b8;
text-align: center;
margin-bottom: 2rem;
}
.stButton > button {
background: linear-gradient(135deg, #1e293b 0%, #334155 100%);
color: #e2e8f0;
border: 1px solid #475569;
border-radius: 10px;
transition: all 0.3s ease;
}
.stButton > button:hover {
background: linear-gradient(135deg, #3b82f6 0%, #8b5cf6 100%);
border-color: #60a5fa;
transform: translateY(-2px);
}
.stTextInput > div > div > input {
background: rgba(30, 41, 59, 0.8);
border: 1px solid #475569;
border-radius: 12px;
color: #f1f5f9;
}
[data-testid="stSidebar"] {
background: linear-gradient(180deg, #0f172a 0%, #1e293b 100%);
}
.pipeline-box {
background: rgba(30, 41, 59, 0.6);
border: 1px solid #475569;
border-radius: 8px;
padding: 0.5rem 1rem;
margin: 0.25rem 0;
font-size: 0.85rem;
text-align: center;
}
.pipeline-arrow {
color: #3b82f6;
text-align: center;
font-size: 1.2rem;
}
</style>
""", unsafe_allow_html=True)
# =============================================================================
# HEADER
# =============================================================================
st.markdown('<p class="main-header">β‘ SQL Learning Assistant</p>', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Transform Natural Language into SQL using AI-Powered Pipeline</p>', unsafe_allow_html=True)
# =============================================================================
# SIDEBAR
# =============================================================================
with st.sidebar:
st.markdown("## βοΈ Configuration")
st.markdown("---")
st.markdown("### π― RAG Settings")
num_examples = st.slider("Similar examples to retrieve", min_value=1, max_value=5, value=3)
st.markdown("---")
st.markdown("### π System Status")
col1, col2 = st.columns(2)
with col1:
st.markdown("β
**RAG**" if retriever else "β **RAG**")
st.markdown("β
**Model**" if model else "β **Model**")
with col2:
st.markdown("β
**Prompts**" if prompt_builder else "β **Prompts**")
st.markdown("β
**Gemini**" if gemini else "β **Gemini**")
st.markdown("---")
st.markdown("### π Pipeline Flow")
pipeline_steps = [
("π¦", "Synthetic Data"),
("π", "Fine-tuned Model"),
("β", "User Question"),
("π", "RAG Retrieval"),
("π", "Prompt Engineering"),
("π€", "Model Inference"),
("β¨", "Gemini Enhancement"),
("β
", "Final Output"),
]
for i, (icon, title) in enumerate(pipeline_steps):
st.markdown(f'<div class="pipeline-box">{icon} <strong>{title}</strong></div>', unsafe_allow_html=True)
if i < len(pipeline_steps) - 1:
st.markdown('<p class="pipeline-arrow">β</p>', unsafe_allow_html=True)
st.markdown("---")
st.markdown("### π About")
st.markdown("**Course:** INFO7375")
# =============================================================================
# MAIN CONTENT
# =============================================================================
if "messages" not in st.session_state:
st.session_state.messages = []
if "results_history" not in st.session_state:
st.session_state.results_history = []
if "input_text" not in st.session_state:
st.session_state.input_text = ""
# =============================================================================
# EXAMPLE QUESTIONS
# =============================================================================
st.markdown("### π‘ Try an Example")
example_questions = [
("π₯ Employees", "Find all employees with salary above 50000"),
("π Orders", "Count total orders by customer"),
("π Top Products", "Show top 5 products by revenue"),
("π
Recent", "List customers who placed orders in 2024"),
("π° Salary", "Calculate average salary by department"),
]
cols = st.columns(5)
for i, (label, ex_question) in enumerate(example_questions):
with cols[i]:
if st.button(label, key=f"ex_{i}", use_container_width=True, help=ex_question):
st.session_state.input_text = ex_question
# =============================================================================
# INPUT AREA
# =============================================================================
st.markdown("### π€ Ask Your Question")
col1, col2 = st.columns([6, 1])
with col1:
question = st.text_input(
"Question",
placeholder="e.g., Find all employees with salary greater than 50000...",
label_visibility="collapsed",
key="input_text"
)
with col2:
submit_btn = st.button("π Run", type="primary", use_container_width=True)
st.markdown("---")
# =============================================================================
# CHAT HISTORY
# =============================================================================
for i, message in enumerate(st.session_state.messages):
with st.chat_message(message["role"], avatar="π§βπ»" if message["role"] == "user" else "π€"):
st.markdown(message["content"])
if message["role"] == "assistant":
result_idx = i // 2
if result_idx < len(st.session_state.results_history):
result = st.session_state.results_history[result_idx]
if result and result.get('success'):
with st.expander("π View Pipeline Details", expanded=False):
tab1, tab2, tab3, tab4 = st.tabs(["π RAG", "π Prompt", "π€ Fine-tuned", "β¨ Gemini"])
with tab1:
examples = result['steps']['rag'].get('examples', [])
st.markdown(f"**Retrieved {len(examples)} examples**")
for j, ex in enumerate(examples, 1):
st.markdown(f"**Example {j}** | Score: `{ex.get('score', 0):.3f}`")
st.markdown(f"Q: {ex.get('question', 'N/A')}")
st.code(ex.get('sql', 'N/A'), language="sql")
with tab2:
st.markdown("**Constructed Prompt:**")
st.code(result['steps']['prompt'].get('prompt', 'N/A'), language="text")
with tab3:
st.markdown("**Fine-tuned Model Output:**")
st.code(result['steps']['finetuned'].get('sql', 'N/A'), language="sql")
with tab4:
if 'gemini_enhance' in result['steps']:
st.markdown("**Enhanced SQL:**")
st.code(result['steps']['gemini_enhance'].get('sql', 'N/A'), language="sql")
# =============================================================================
# PROCESS QUERY
# =============================================================================
if submit_btn and question:
st.session_state.messages.append({"role": "user", "content": question})
with st.chat_message("user", avatar="π§βπ»"):
st.markdown(question)
with st.chat_message("assistant", avatar="π€"):
with st.status("π Processing your query...", expanded=True) as status:
st.write("π Retrieving similar examples...")
st.write("π Building prompt...")
st.write("π€ Generating SQL...")
st.write("β¨ Enhancing with Gemini...")
result = run_pipeline(question=question, num_examples=num_examples)
status.update(label="β
Complete!", state="complete", expanded=False)
st.session_state.results_history.append(result)
if result['success']:
st.markdown("### β
Generated SQL")
st.code(result['final_sql'], language="sql")
if 'gemini_enhance' in result['steps']:
original = result['steps']['finetuned'].get('sql', '')
enhanced = result['steps']['gemini_enhance'].get('sql', '')
if original != enhanced:
st.success("β¨ Query optimized by Gemini!")
else:
st.info("β Query was already optimal")
if 'explanation' in result and result['explanation']:
if not result['explanation'].startswith("Explanation error"):
st.markdown("### π Explanation")
st.info(result['explanation'])
with st.expander("π View Pipeline Details", expanded=False):
tab1, tab2, tab3, tab4 = st.tabs(["π RAG", "π Prompt", "π€ Fine-tuned", "β¨ Gemini"])
with tab1:
examples = result['steps']['rag'].get('examples', [])
st.markdown(f"**Retrieved {len(examples)} examples**")
for j, ex in enumerate(examples, 1):
st.markdown(f"**Example {j}** | Score: `{ex.get('score', 0):.3f}`")
st.markdown(f"Q: {ex.get('question', 'N/A')}")
st.code(ex.get('sql', 'N/A'), language="sql")
with tab2:
st.markdown("**Constructed Prompt:**")
st.code(result['steps']['prompt'].get('prompt', 'N/A'), language="text")
with tab3:
st.markdown("**Fine-tuned Model Output:**")
st.code(result['steps']['finetuned'].get('sql', 'N/A'), language="sql")
with tab4:
if 'gemini_enhance' in result['steps']:
st.markdown("**Enhanced SQL:**")
st.code(result['steps']['gemini_enhance'].get('sql', 'N/A'), language="sql")
response_text = f"**Generated SQL:**\n```sql\n{result['final_sql']}\n```"
if 'explanation' in result and not result['explanation'].startswith("Explanation error"):
response_text += f"\n\n**Explanation:** {result['explanation']}"
st.session_state.messages.append({"role": "assistant", "content": response_text})
else:
st.error("β Failed to generate SQL. Please try again.")
st.session_state.messages.append({"role": "assistant", "content": "β Failed to generate SQL."})
elif submit_btn and not question:
st.warning("β οΈ Please enter a question first!")
# =============================================================================
# FOOTER
# =============================================================================
st.markdown("---")
col1, col2, col3 = st.columns([1, 2, 1])
with col1:
if st.button("ποΈ Clear Chat", use_container_width=True):
st.session_state.messages = []
st.session_state.results_history = []
st.session_state.input_text = ""
st.rerun()
with col2:
st.markdown('<p style="text-align: center; color: #64748b;">Built with β€οΈ using Streamlit β’ LangChain β’ Gemini</p>', unsafe_allow_html=True)
with col3:
st.markdown('<p style="text-align: right; color: #64748b;"><strong>INFO7375</strong></p>', unsafe_allow_html=True) |