|
|
import argparse |
|
|
import sys |
|
|
import os |
|
|
|
|
|
import torch |
|
|
sys.path.insert(0, os.path.dirname(__file__)) |
|
|
import numpy as np |
|
|
import joblib |
|
|
from scripts.scripts_test_video.detect_track_video import detect_track_video |
|
|
from scripts.scripts_test_video.hawor_video import hawor_motion_estimation, hawor_infiller |
|
|
from scripts.scripts_test_video.hawor_slam import hawor_slam |
|
|
from hawor.utils.process import get_mano_faces, run_mano, run_mano_left |
|
|
from lib.eval_utils.custom_utils import load_slam_cam |
|
|
from lib.vis.run_vis2 import run_vis2_on_video, run_vis2_on_video_cam |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--img_focal", type=float) |
|
|
parser.add_argument("--video_path", type=str, default='example/video_0.mp4') |
|
|
parser.add_argument("--input_type", type=str, default='file') |
|
|
parser.add_argument("--checkpoint", type=str, default='./weights/hawor/checkpoints/hawor.ckpt') |
|
|
parser.add_argument("--infiller_weight", type=str, default='./weights/hawor/checkpoints/infiller.pt') |
|
|
parser.add_argument("--vis_mode", type=str, default='world', help='cam | world') |
|
|
args = parser.parse_args() |
|
|
|
|
|
start_idx, end_idx, seq_folder, imgfiles = detect_track_video(args) |
|
|
|
|
|
frame_chunks_all, img_focal = hawor_motion_estimation(args, start_idx, end_idx, seq_folder) |
|
|
|
|
|
slam_path = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz") |
|
|
if not os.path.exists(slam_path): |
|
|
hawor_slam(args, start_idx, end_idx) |
|
|
slam_path = os.path.join(seq_folder, f"SLAM/hawor_slam_w_scale_{start_idx}_{end_idx}.npz") |
|
|
R_w2c_sla_all, t_w2c_sla_all, R_c2w_sla_all, t_c2w_sla_all = load_slam_cam(slam_path) |
|
|
|
|
|
pred_trans, pred_rot, pred_hand_pose, pred_betas, pred_valid = hawor_infiller(args, start_idx, end_idx, frame_chunks_all) |
|
|
|
|
|
|
|
|
hand2idx = { |
|
|
"right": 1, |
|
|
"left": 0 |
|
|
} |
|
|
vis_start = 0 |
|
|
vis_end = pred_trans.shape[1] - 1 |
|
|
|
|
|
|
|
|
faces = get_mano_faces() |
|
|
faces_new = np.array([[92, 38, 234], |
|
|
[234, 38, 239], |
|
|
[38, 122, 239], |
|
|
[239, 122, 279], |
|
|
[122, 118, 279], |
|
|
[279, 118, 215], |
|
|
[118, 117, 215], |
|
|
[215, 117, 214], |
|
|
[117, 119, 214], |
|
|
[214, 119, 121], |
|
|
[119, 120, 121], |
|
|
[121, 120, 78], |
|
|
[120, 108, 78], |
|
|
[78, 108, 79]]) |
|
|
faces_right = np.concatenate([faces, faces_new], axis=0) |
|
|
|
|
|
|
|
|
hand = 'right' |
|
|
hand_idx = hand2idx[hand] |
|
|
pred_glob_r = run_mano(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end]) |
|
|
right_verts = pred_glob_r['vertices'][0] |
|
|
right_dict = { |
|
|
'vertices': right_verts.unsqueeze(0), |
|
|
'faces': faces_right, |
|
|
} |
|
|
|
|
|
|
|
|
faces_left = faces_right[:,[0,2,1]] |
|
|
hand = 'left' |
|
|
hand_idx = hand2idx[hand] |
|
|
pred_glob_l = run_mano_left(pred_trans[hand_idx:hand_idx+1, vis_start:vis_end], pred_rot[hand_idx:hand_idx+1, vis_start:vis_end], pred_hand_pose[hand_idx:hand_idx+1, vis_start:vis_end], betas=pred_betas[hand_idx:hand_idx+1, vis_start:vis_end]) |
|
|
left_verts = pred_glob_l['vertices'][0] |
|
|
left_dict = { |
|
|
'vertices': left_verts.unsqueeze(0), |
|
|
'faces': faces_left, |
|
|
} |
|
|
|
|
|
R_x = torch.tensor([[1, 0, 0], |
|
|
[0, -1, 0], |
|
|
[0, 0, -1]]).float() |
|
|
R_c2w_sla_all = torch.einsum('ij,njk->nik', R_x, R_c2w_sla_all) |
|
|
t_c2w_sla_all = torch.einsum('ij,nj->ni', R_x, t_c2w_sla_all) |
|
|
R_w2c_sla_all = R_c2w_sla_all.transpose(-1, -2) |
|
|
t_w2c_sla_all = -torch.einsum("bij,bj->bi", R_w2c_sla_all, t_c2w_sla_all) |
|
|
left_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, left_dict['vertices'].cpu()) |
|
|
right_dict['vertices'] = torch.einsum('ij,btnj->btni', R_x, right_dict['vertices'].cpu()) |
|
|
|
|
|
|
|
|
if args.vis_mode == 'world': |
|
|
output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}") |
|
|
if not os.path.exists(output_pth): |
|
|
os.makedirs(output_pth) |
|
|
image_names = imgfiles[vis_start:vis_end] |
|
|
print(f"vis {vis_start} to {vis_end}") |
|
|
run_vis2_on_video(left_dict, right_dict, output_pth, img_focal, image_names, R_c2w=R_c2w_sla_all[vis_start:vis_end], t_c2w=t_c2w_sla_all[vis_start:vis_end]) |
|
|
elif args.vis_mode == 'cam': |
|
|
output_pth = os.path.join(seq_folder, f"vis_{vis_start}_{vis_end}") |
|
|
if not os.path.exists(output_pth): |
|
|
os.makedirs(output_pth) |
|
|
image_names = imgfiles[vis_start:vis_end] |
|
|
print(f"vis {vis_start} to {vis_end}") |
|
|
run_vis2_on_video_cam(left_dict, right_dict, output_pth, img_focal, image_names, R_w2c=R_w2c_sla_all[vis_start:vis_end], t_w2c=t_w2c_sla_all[vis_start:vis_end]) |
|
|
|
|
|
print("finish") |
|
|
|
|
|
|
|
|
|
|
|
|