File size: 29,878 Bytes
aae3ba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 |
import os
import sys
import cv2
import math
import json
import torch
import argparse
import numpy as np
from PIL import Image
from PIL import ImageOps
from pathlib import Path
import multiprocessing as mp
from vitra.models import VITRA_Paligemma, load_model
from vitra.utils.data_utils import resize_short_side_to_target, load_normalizer, recon_traj
from vitra.utils.config_utils import load_config
from vitra.datasets.human_dataset import pad_state_human, pad_action
from scipy.spatial.transform import Rotation as R
from vitra.datasets.dataset_utils import (
compute_new_intrinsics_resize,
calculate_fov,
ActionFeature,
StateFeature,
)
repo_root = Path(__file__).parent.parent # VITRA/
sys.path.insert(0, str(repo_root))
from visualization.visualize_core import HandVisualizer, normalize_camera_intrinsics, save_to_video, Renderer, process_single_hand_labels
from visualization.visualize_core import Config as HandConfig
def main():
"""
Main execution function for hand action prediction and visualization.
This function uses a multi-process architecture to separate hand reconstruction
and VLA inference into independent processes, preventing CUDA conflicts.
Workflow:
1. Parse command-line arguments and load model configurations
2. Initialize persistent services:
- HandReconstructionService: Runs HAWOR + MOGE models in separate process
- VLAInferenceService: Runs VLA model in separate process
3. Load or reconstruct hand state:
- Uses precomputed .npy file if available (same stem as image)
- Otherwise runs hand reconstruction service
4. Prepare input data:
- Load and resize image
- Extract hand state (translation, rotation, pose) for left/right hands
- Create state and action masks based on which hands to predict
5. Run VLA inference to predict future hand actions (multiple samples for diversity)
6. Reconstruct absolute hand trajectories from relative actions
7. Visualize predicted hand motions using MANO hand model
8. Generate grid layout video showing all samples and save to file
9. Cleanup: Shutdown persistent services and free GPU memory
"""
parser = argparse.ArgumentParser(description="Hand VLA inference and visualization.")
# Model Configuration
parser.add_argument('--config_path', type=str, required=True, help='Path to model configuration JSON file')
parser.add_argument('--model_path', type=str, default=None, help='Path to model checkpoint (overrides config)')
parser.add_argument('--statistics_path', type=str, default=None, help='Path to normalization statistics JSON (overrides config)')
# Input/Output
parser.add_argument('--image_path', type=str, required=True, help='Path to input image file')
parser.add_argument('--hand_path', type=str, default=None, help='Path to hand state .npy file (optional, will run reconstruction if not provided)')
parser.add_argument('--video_path', type=str, default='./example_human_inf.mp4', help='Path to save output visualization video')
# Hand Reconstruction Models
parser.add_argument('--hawor_model_path', type=str, default='./weights/hawor/checkpoints/hawor.ckpt', help='Path to HAWOR model weights')
parser.add_argument('--detector_path', type=str, default='./weights/hawor/external/detector.pt', help='Path to hand detector model')
parser.add_argument('--moge_model_name', type=str, default='Ruicheng/moge-2-vitl', help='MOGE model name from Hugging Face')
parser.add_argument('--mano_path', type=str, default='/home/t-qixiuli/repo/VITRA/weights/mano', help='Path to MANO model files')
# parser.add_argument('--output_path', type=str, default='./recon_results.npy', help='Path to save reconstruction results')
# Prediction Settings
parser.add_argument('--use_left', action='store_true', help='Enable left hand prediction')
parser.add_argument('--use_right', action='store_true', help='Enable right hand prediction')
parser.add_argument('--instruction', type=str, default="Left hand: Put the trash into the garbage. Right hand: None.", help='Text instruction for hand motion')
parser.add_argument('--sample_times', type=int, default=4, help='Number of action samples to generate for diversity')
parser.add_argument('--fps', type=int, default=8, help='Frames per second for output video')
# Advanced Options
parser.add_argument('--save_state_local', action='store_true', help='Save hand state locally as .npy file')
# === Environment Configuration ===
# Disable tokenizers parallelism to avoid deadlocks in multi-process data loading
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = parser.parse_args()
# Validate that at least one hand is selected
if not args.use_left and not args.use_right:
raise ValueError("At least one of --use_left or --use_right must be specified.")
# Load configs
configs = load_config(args.config_path)
# Override config with command-line arguments if provided
if args.model_path is not None:
configs['model_load_path'] = args.model_path
if args.statistics_path is not None:
configs['statistics_path'] = args.statistics_path
# Check if a precomputed hand reconstruction .npy (same stem as image) exists.
image_path_obj = Path(args.image_path)
npy_path = image_path_obj.with_suffix('.npy')
# Initialize services
print("Initializing services...")
if npy_path.exists():
# If precomputed .npy exists, load hand state from it
# Hand State File Format
# The hand state is stored as a .npy file containing a Python dictionary with the following structure:
# Format: .npy
# Content: dictionary with MANO-based hand pose parameters and camera FOV.
# Structure:
# {
# 'left': {
# 0: {
# 'hand_pose': np.ndarray, # [15, 3, 3] rotation matrices for MANO joints
# 'global_orient': np.ndarray, # [3, 3] global rotation matrix
# 'transl': np.ndarray, # [3] root translation in camera coordinates
# 'beta': np.ndarray # [10] MANO shape parameters
# }
# },
# 'right': { # Same structure as 'left'
# 0: {
# ...
# }
# },
# 'fov_x': float # Horizontal field of view (in degrees)
# }
print(f"Found precomputed hand state results: {npy_path}. Using the state instead of running hand recon.")
hand_data = np.load(npy_path, allow_pickle=True).item()
hand_recon_service = None
else:
print(f"No precomputed hand state .npy found at {npy_path}. Starting hand reconstruction service.")
# Start hand reconstruction service
hand_recon_service = HandReconstructionService(args)
hand_data = None
# Start VLA service (normalizer and model are loaded inside the service)
vla_service = VLAInferenceService(configs)
# Visualization setup
hand_config = HandConfig(args)
hand_config.FPS = args.fps
visualizer = HandVisualizer(hand_config, render_gradual_traj=False)
try:
if hand_data is None:
# Run hand reconstruction using service
print("Running hand reconstruction...")
hand_data = hand_recon_service.reconstruct(args.image_path)
if args.save_state_local:
# Save hand state locally as .npy
np.save(npy_path, hand_data, allow_pickle=True)
print(f"Saved reconstructed hand state to {npy_path}")
# Load and process image
image = Image.open(args.image_path)
ori_w, ori_h = image.size
# Handle EXIF orientation if present (fixes image rotation issues)
try:
image = ImageOps.exif_transpose(image)
except Exception:
pass # If EXIF handling fails, continue with original image
image_resized = resize_short_side_to_target(image, target=224)
w, h = image_resized.size
use_right = args.use_right
use_left = args.use_left
# Initialize state
current_state_left = None
current_state_right = None
if use_right:
current_state_right, beta_right, fov_x, _ = get_state(hand_data, hand_side='right')
if use_left:
current_state_left, beta_left, fov_x, _ = get_state(hand_data, hand_side='left')
fov_x = fov_x * np.pi /180
f_ori = ori_w / np.tan(fov_x / 2) /2
fov_y = 2 * np.arctan(ori_h / (2 * f_ori))
f = w / np.tan(fov_x / 2) /2
intrinsics = np.array([
[f, 0, w/2],
[0, f, h/2],
[0, 0, 1]
])
# Concatenate left and right hand states, filling with zeros if one is None
if current_state_left is None and current_state_right is None:
raise ValueError("Both current_state_left and current_state_right are None")
state_left = current_state_left if use_left else np.zeros_like(current_state_right)
beta_left = beta_left if use_left else np.zeros_like(beta_right)
state_right = current_state_right if use_right else np.zeros_like(current_state_left)
beta_right = beta_right if use_right else np.zeros_like(beta_left)
state = np.concatenate([state_left, beta_left, state_right, beta_right], axis=0)
state_mask = np.array([use_left, use_right], dtype=bool)
# Note: chunk_size needs to be determined from config
chunk_size = configs.get('fwd_pred_next_n', 16) # Default to 16 if not in config
action_mask = np.tile(np.array([[use_left, use_right]], dtype=bool), (chunk_size, 1))
fov = np.array([fov_x, fov_y], dtype=np.float32)
# Convert resized image to numpy for VLA inference
image_resized_np = np.array(image_resized)
# Use instruction from command-line argument
instruction = args.instruction
# Model inference using service (includes normalization, padding, and unnormalization)
print(f"Running VLA inference...")
sample_times = args.sample_times
unnorm_action = vla_service.predict(
image=image_resized_np,
instruction=instruction,
state=state,
state_mask=state_mask,
action_mask=action_mask,
fov=fov,
num_ddim_steps=10,
cfg_scale=5.0,
sample_times=sample_times,
)
fx_exo = intrinsics[0, 0]
fy_exo = intrinsics[1, 1]
renderer = Renderer(w, h, (fx_exo, fy_exo), 'cuda')
T = len(action_mask) + 1
traj_right_list = np.zeros((sample_times, T, 51), dtype=np.float32)
traj_left_list = np.zeros((sample_times, T, 51), dtype=np.float32)
traj_mask = np.tile(np.array([[use_left, use_right]], dtype=bool), (T, 1))
left_hand_mask = traj_mask[:, 0]
right_hand_mask = traj_mask[:, 1]
# Masks indicating which hands are used in the trajectory
hand_mask = (left_hand_mask, right_hand_mask)
all_rendered_frames = []
# Reconstruct trajectories and visualize for each sample
for i in range(sample_times):
traj_right = traj_right_list[i]
traj_left = traj_left_list[i]
if use_left:
traj_left = recon_traj(
state=state_left,
rel_action=unnorm_action[i, :, 0:51],
)
if use_right:
traj_right = recon_traj(
state=state_right,
rel_action=unnorm_action[i, :, 51:102],
)
left_hand_labels = {
'transl_worldspace': traj_left[:, 0:3],
'global_orient_worldspace': R.from_euler('xyz', traj_left[:, 3:6]).as_matrix(),
'hand_pose': euler_traj_to_rotmat_traj(traj_left[:, 6:51], T),
'beta': beta_left,
}
right_hand_labels = {
'transl_worldspace': traj_right[:, 0:3],
'global_orient_worldspace': R.from_euler('xyz', traj_right[:, 3:6]).as_matrix(),
'hand_pose': euler_traj_to_rotmat_traj(traj_right[:, 6:51], T),
'beta': beta_right,
}
verts_left_worldspace, _ = process_single_hand_labels(left_hand_labels, left_hand_mask, visualizer.mano, is_left=True)
verts_right_worldspace, _ = process_single_hand_labels(right_hand_labels, right_hand_mask, visualizer.mano, is_left=False)
hand_traj_wordspace = (verts_left_worldspace, verts_right_worldspace)
R_w2c = np.broadcast_to(np.eye(3), (T, 3, 3)).copy()
t_w2c = np.zeros((T, 3, 1), dtype=np.float32)
extrinsics = (R_w2c, t_w2c)
# Use resized image for visualization (convert RGB to BGR)
image_bgr = image_resized_np[..., ::-1]
resize_video_frames = [image_bgr] * T
save_frames = visualizer._render_hand_trajectory(
resize_video_frames,
hand_traj_wordspace,
hand_mask,
extrinsics,
renderer,
mode='first'
)
all_rendered_frames.append(save_frames)
# Concatenate all samples spatially into a single video
# all_rendered_frames: list of sample_times frame lists
# Each frame list has T frames
num_frames = len(all_rendered_frames[0])
# Determine grid layout (e.g., 2x2 for 4 samples)
grid_cols = math.ceil(math.sqrt(sample_times))
grid_rows = math.ceil(sample_times / grid_cols)
# Combine different samples in one video
combined_frames = []
for frame_idx in range(num_frames):
# Collect all sample frames at this time step
sample_frames = [all_rendered_frames[i][frame_idx] for i in range(sample_times)]
# Pad with black frames if needed to fill the grid
while len(sample_frames) < grid_rows * grid_cols:
black_frame = np.zeros_like(sample_frames[0])
sample_frames.append(black_frame)
# Arrange frames in grid
rows = []
for row_idx in range(grid_rows):
row_frames = sample_frames[row_idx * grid_cols:(row_idx + 1) * grid_cols]
row_concat = np.concatenate(row_frames, axis=1) # Concatenate horizontally
rows.append(row_concat)
# Concatenate rows vertically
combined_frame = np.concatenate(rows, axis=0)
combined_frames.append(combined_frame)
# Save combined video
save_to_video(combined_frames, f'{args.video_path}', fps=hand_config.FPS)
print(f"Combined video with {sample_times} samples saved to {args.video_path}")
finally:
# Cleanup persistent services
print("Shutting down services...")
if hand_recon_service is not None:
hand_recon_service.shutdown()
vla_service.shutdown()
print("All services shut down successfully")
def get_state(hand_data, hand_side='right'):
"""
Load and extract hand state from hand data.
Args:
hand_data (dict): Dictionary containing hand data
hand_side (str): Which hand to extract, either 'left' or 'right'. Default is 'right'.
Returns:
tuple: (state_t0, beta, fov_x, None) where:
- state_t0 (np.ndarray): Hand state [51] containing translation (3),
global rotation (3 euler angles), and hand pose (45 euler angles)
- beta (np.ndarray): MANO shape parameters [10]
- fov_x (float): Horizontal field of view in degrees
- None: Placeholder for optional text annotations
"""
if hand_side not in ['left', 'right']:
raise ValueError(f"hand_side must be 'left' or 'right', got '{hand_side}'")
hand_pose_t0 = hand_data[hand_side][0]['hand_pose']
hand_pose_t0_euler = R.from_matrix(hand_pose_t0).as_euler('xyz', degrees=False) # [15, 3]
hand_pose_t0_euler = hand_pose_t0_euler.reshape(-1) # [45]
global_orient_mat_t0 = hand_data[hand_side][0]['global_orient']
R_t0_euler = R.from_matrix(global_orient_mat_t0).as_euler('xyz', degrees=False) # [3]
transl_t0 = hand_data[hand_side][0]['transl'] # [3]
state_t0 = np.concatenate([transl_t0, R_t0_euler, hand_pose_t0_euler]) # [3+3+45=51]
fov_x = hand_data['fov_x']
return state_t0, hand_data[hand_side][0]['beta'], fov_x, None
def euler_traj_to_rotmat_traj(euler_traj, T):
"""
Convert Euler angle trajectory to rotation matrix trajectory.
Converts a sequence of hand poses represented as Euler angles into
rotation matrices suitable for MANO model input.
Args:
euler_traj (np.ndarray): Hand pose trajectory as Euler angles.
Shape: [T, 45] where T is number of timesteps
and 45 = 15 joints * 3 Euler angles per joint
T (int): Number of timesteps in the trajectory
Returns:
np.ndarray: Rotation matrix trajectory. Shape: [T, 15, 3, 3]
where each [3, 3] block is a rotation matrix for one joint
"""
hand_pose = euler_traj.reshape(-1, 3) # [T*15, 3]
pose_matrices = R.from_euler('xyz', hand_pose).as_matrix() # [T*15, 3, 3]
pose_matrices = pose_matrices.reshape(T, 15, 3, 3) # [T, 15, 3, 3]
return pose_matrices
def _hand_reconstruction_worker(args_dict, task_queue, result_queue):
"""
Persistent worker for hand reconstruction that runs in a separate process.
Keeps model loaded and processes multiple requests until shutdown signal.
"""
from data.tools.hand_recon_core import Config, HandReconstructor
hand_reconstructor = None
try:
# Reconstruct args object
class ArgsObj:
pass
args_obj = ArgsObj()
for key, value in args_dict.items():
setattr(args_obj, key, value)
# Initialize hand reconstructor once
print("[HandRecon Process] Initializing hand reconstructor...")
config = Config(args_obj)
hand_reconstructor = HandReconstructor(config=config, device='cuda')
print("[HandRecon Process] Hand reconstructor ready")
# Signal ready
result_queue.put({'type': 'ready'})
# Process tasks in loop
while True:
task = task_queue.get()
if task['type'] == 'shutdown':
print("[HandRecon Process] Received shutdown signal")
break
elif task['type'] == 'reconstruct':
try:
image_path = task['image_path']
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Failed to load image from {image_path}")
image_list = [image]
recon_results = hand_reconstructor.recon(image_list)
result_queue.put({
'type': 'result',
'success': True,
'data': recon_results
})
except Exception as e:
import traceback
result_queue.put({
'type': 'result',
'success': False,
'error': str(e),
'traceback': traceback.format_exc()
})
except Exception as e:
import traceback
result_queue.put({
'type': 'error',
'error': str(e),
'traceback': traceback.format_exc()
})
finally:
# Cleanup on shutdown
if hand_reconstructor is not None:
del hand_reconstructor
torch.cuda.empty_cache()
torch.cuda.synchronize()
print("[HandRecon Process] Cleaned up and exiting")
def _vla_inference_worker(configs_dict, task_queue, result_queue):
"""
Persistent worker for VLA model inference that runs in a separate process.
Keeps model loaded and processes multiple requests until shutdown signal.
"""
from vitra.models import load_model
from vitra.utils.data_utils import load_normalizer
from vitra.datasets.human_dataset import pad_state_human, pad_action
from vitra.datasets.dataset_utils import ActionFeature, StateFeature
model = None
normalizer = None
try:
# Load model and normalizer once
print("[VLA Process] Loading VLA model...")
model = load_model(configs_dict).cuda()
model.eval()
normalizer = load_normalizer(configs_dict)
print(f"[VLA Process] VLA model ready.")
# Signal ready
result_queue.put({'type': 'ready'})
# Process tasks in loop
while True:
task = task_queue.get()
if task['type'] == 'shutdown':
print("[VLA Process] Received shutdown signal")
break
elif task['type'] == 'predict':
try:
image = task['image']
instruction = task['instruction']
state = task['state']
state_mask = task['state_mask']
action_mask = task['action_mask']
fov = task['fov']
num_ddim_steps = task.get('num_ddim_steps', 10)
cfg_scale = task.get('cfg_scale', 5.0)
sample_times = task.get('sample_times', 1)
# Normalize state
norm_state = normalizer.normalize_state(state.copy())
# Pad state and action
unified_action_dim = ActionFeature.ALL_FEATURES[1] # 192
unified_state_dim = StateFeature.ALL_FEATURES[1] # 212
unified_state, unified_state_mask = pad_state_human(
state=norm_state,
state_mask=state_mask,
action_dim=normalizer.action_mean.shape[0],
state_dim=normalizer.state_mean.shape[0],
unified_state_dim=unified_state_dim,
)
_, unified_action_mask = pad_action(
actions=None,
action_mask=action_mask.copy(),
action_dim=normalizer.action_mean.shape[0],
unified_action_dim=unified_action_dim
)
# Convert to torch and move to GPU
fov = torch.from_numpy(fov).unsqueeze(0)
unified_state = unified_state.unsqueeze(0)
unified_state_mask = unified_state_mask.unsqueeze(0)
unified_action_mask = unified_action_mask.unsqueeze(0)
# Run inference
norm_action = model.predict_action(
image=image,
instruction=instruction,
current_state=unified_state,
current_state_mask=unified_state_mask,
action_mask_torch=unified_action_mask,
num_ddim_steps=num_ddim_steps,
cfg_scale=cfg_scale,
fov=fov,
sample_times=sample_times,
)
# Extract and denormalize action
norm_action = norm_action[:, :, :102]
unnorm_action = normalizer.unnormalize_action(norm_action)
# Convert to numpy for inter-process communication
if isinstance(unnorm_action, torch.Tensor):
unnorm_action_np = unnorm_action.cpu().numpy()
else:
unnorm_action_np = np.array(unnorm_action)
result_queue.put({
'type': 'result',
'success': True,
'data': unnorm_action_np
})
except Exception as e:
import traceback
result_queue.put({
'type': 'result',
'success': False,
'error': str(e),
'traceback': traceback.format_exc()
})
except Exception as e:
import traceback
result_queue.put({
'type': 'error',
'error': str(e),
'traceback': traceback.format_exc()
})
finally:
# Cleanup on shutdown
if model is not None:
del model
if normalizer is not None:
del normalizer
torch.cuda.empty_cache()
torch.cuda.synchronize()
print("[VLA Process] Cleaned up and exiting")
class HandReconstructionService:
"""Service wrapper for persistent hand reconstruction process"""
def __init__(self, args):
self.ctx = mp.get_context('spawn')
self.task_queue = self.ctx.Queue()
self.result_queue = self.ctx.Queue()
# Convert args to dict for pickling
args_dict = {
'hawor_model_path': args.hawor_model_path,
'detector_path': args.detector_path,
'moge_model_name': args.moge_model_name,
'mano_path': args.mano_path,
}
# Start persistent process
self.process = self.ctx.Process(
target=_hand_reconstruction_worker,
args=(args_dict, self.task_queue, self.result_queue)
)
self.process.start()
# Wait for ready signal
ready_msg = self.result_queue.get()
if ready_msg['type'] == 'ready':
print("Hand reconstruction service initialized")
elif ready_msg['type'] == 'error':
raise RuntimeError(f"Failed to initialize hand reconstruction: {ready_msg['error']}")
def reconstruct(self, image_path):
"""Request hand reconstruction for an image"""
self.task_queue.put({
'type': 'reconstruct',
'image_path': image_path
})
result = self.result_queue.get()
if result['type'] == 'result' and result['success']:
return result['data']
else:
raise RuntimeError(f"Hand reconstruction failed: {result.get('error', 'Unknown error')}")
def shutdown(self):
"""Shutdown the persistent process"""
self.task_queue.put({'type': 'shutdown'})
self.process.join(timeout=10)
if self.process.is_alive():
self.process.terminate()
self.process.join()
class VLAInferenceService:
"""Service wrapper for persistent VLA inference process"""
def __init__(self, configs):
self.ctx = mp.get_context('spawn')
self.task_queue = self.ctx.Queue()
self.result_queue = self.ctx.Queue()
# Start persistent process
self.process = self.ctx.Process(
target=_vla_inference_worker,
args=(configs, self.task_queue, self.result_queue)
)
self.process.start()
# Wait for ready signal
ready_msg = self.result_queue.get()
if ready_msg['type'] == 'ready':
print("VLA inference service initialized")
elif ready_msg['type'] == 'error':
raise RuntimeError(f"Failed to initialize VLA model: {ready_msg['error']}")
def predict(self, image, instruction, state, state_mask, action_mask,
fov, num_ddim_steps=10, cfg_scale=5.0, sample_times=1):
"""Request action prediction with state normalization and padding"""
self.task_queue.put({
'type': 'predict',
'image': image,
'instruction': instruction,
'state': state,
'state_mask': state_mask,
'action_mask': action_mask,
'fov': fov,
'num_ddim_steps': num_ddim_steps,
'cfg_scale': cfg_scale,
'sample_times': sample_times,
})
result = self.result_queue.get()
if result['type'] == 'result' and result['success']:
# Return unnormalized action as numpy array
return result['data']
else:
raise RuntimeError(f"VLA inference failed: {result.get('error', 'Unknown error')}")
def shutdown(self):
"""Shutdown the persistent process"""
self.task_queue.put({'type': 'shutdown'})
self.process.join(timeout=10)
if self.process.is_alive():
self.process.terminate()
self.process.join()
if __name__ == "__main__":
# Set multiprocessing start method to 'spawn' to avoid CUDA fork issues
mp.set_start_method('spawn', force=True)
main() |