File size: 41,432 Bytes
aae3ba1 2d28e96 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 2d28e96 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 5a9dd28 eb2b831 aae3ba1 5a9dd28 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 eb2b831 aae3ba1 2d28e96 eb2b831 aae3ba1 a0efb77 aae3ba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
import os
import sys
import cv2
import math
import json
import torch
import gradio as gr
import numpy as np
from PIL import Image
from PIL import ImageOps
from pathlib import Path
import multiprocessing as mp
from vitra.utils.data_utils import resize_short_side_to_target, load_normalizer, recon_traj
from vitra.utils.config_utils import load_config
from scipy.spatial.transform import Rotation as R
import spaces
repo_root = Path(__file__).parent # VITRA/
sys.path.insert(0, str(repo_root))
from visualization.visualize_core import HandVisualizer, normalize_camera_intrinsics, save_to_video, Renderer, process_single_hand_labels
from visualization.visualize_core import Config as HandConfig
# Import worker functions from the original script
from inference_human_prediction import (
get_state,
euler_traj_to_rotmat_traj,
)
# Disable tokenizers parallelism
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Global models (will be initialized once)
vla_model = None
vla_normalizer = None
hand_reconstructor = None
visualizer = None
hand_config = None
app_config = None
def vla_predict(model, normalizer, image, instruction, state, state_mask,
action_mask, fov, num_ddim_steps, cfg_scale, sample_times):
"""
VLA prediction function that runs on GPU.
Model is already loaded and moved to CUDA in main process.
"""
from vitra.datasets.human_dataset import pad_state_human, pad_action
from vitra.datasets.dataset_utils import ActionFeature, StateFeature
# Normalize state
norm_state = normalizer.normalize_state(state.copy())
# Pad state and action
unified_action_dim = ActionFeature.ALL_FEATURES[1] # 192
unified_state_dim = StateFeature.ALL_FEATURES[1] # 212
unified_state, unified_state_mask = pad_state_human(
state=norm_state,
state_mask=state_mask,
action_dim=normalizer.action_mean.shape[0],
state_dim=normalizer.state_mean.shape[0],
unified_state_dim=unified_state_dim,
)
_, unified_action_mask = pad_action(
actions=None,
action_mask=action_mask.copy(),
action_dim=normalizer.action_mean.shape[0],
unified_action_dim=unified_action_dim
)
# Convert to torch and move to GPU
device = torch.device('cuda')
fov = torch.from_numpy(fov).unsqueeze(0).to(device)
unified_state = unified_state.unsqueeze(0).to(device)
unified_state_mask = unified_state_mask.unsqueeze(0).to(device)
unified_action_mask = unified_action_mask.unsqueeze(0).to(device)
# Ensure model is on CUDA (Spaces requirement)
model = model.to(device)
# Run inference
norm_action = model.predict_action(
image=image,
instruction=instruction,
current_state=unified_state,
current_state_mask=unified_state_mask,
action_mask_torch=unified_action_mask,
num_ddim_steps=num_ddim_steps,
cfg_scale=cfg_scale,
fov=fov,
sample_times=sample_times,
)
# Extract and denormalize action
norm_action = norm_action[:, :, :102]
unnorm_action = normalizer.unnormalize_action(norm_action)
# Convert to numpy
if isinstance(unnorm_action, torch.Tensor):
unnorm_action_np = unnorm_action.cpu().numpy()
else:
unnorm_action_np = np.array(unnorm_action)
return unnorm_action_np
class GradioConfig:
"""Configuration for Gradio app"""
def __init__(self):
# Model Configuration
self.config_path = 'microsoft/VITRA-VLA-3B'
self.model_path = None
self.statistics_path = None
# Hand Reconstruction Models
self.hawor_model_path = 'arnoldland/HAWOR'
self.detector_path = './weights/hawor/external/detector.pt'
self.moge_model_name = 'Ruicheng/moge-2-vitl'
self.mano_path = './weights/mano'
# Prediction Settings
self.fps = 8
def initialize_services():
"""Initialize all models once at startup"""
global vla_model, vla_normalizer, hand_reconstructor, visualizer, hand_config, app_config
if vla_model is not None:
return "Services already initialized"
try:
app_config = GradioConfig()
# Set HuggingFace token from environment variable
hf_token = os.environ.get('HF_TOKEN', None)
if hf_token:
from huggingface_hub import login
login(token=hf_token)
print("Logged in to HuggingFace Hub")
# Load VLA model and normalizer
print("Loading VLA model...")
from vitra.models import load_model
from vitra.utils.data_utils import load_normalizer
configs = load_config(app_config.config_path)
if app_config.model_path is not None:
configs['model_load_path'] = app_config.model_path
if app_config.statistics_path is not None:
configs['statistics_path'] = app_config.statistics_path
# Store models globally
globals()['vla_model'] = load_model(configs).cuda()
globals()['vla_model'].eval()
globals()['vla_normalizer'] = load_normalizer(configs)
print("VLA model loaded")
# Load Hand Reconstructor
print("Loading Hand Reconstructor...")
from data.tools.hand_recon_core import Config, HandReconstructor
class ArgsObj:
pass
args_obj = ArgsObj()
args_obj.hawor_model_path = app_config.hawor_model_path
args_obj.detector_path = app_config.detector_path
args_obj.moge_model_name = app_config.moge_model_name
args_obj.mano_path = app_config.mano_path
recon_config = Config(args_obj)
globals()['hand_reconstructor'] = HandReconstructor(config=recon_config, device='cuda')
print("Hand Reconstructor loaded")
# Initialize visualizer with MANO on CUDA
print("Loading Visualizer...")
globals()['hand_config'] = HandConfig(app_config)
globals()['hand_config'].FPS = app_config.fps
globals()['visualizer'] = HandVisualizer(globals()['hand_config'], render_gradual_traj=False)
globals()['visualizer'].mano = globals()['visualizer'].mano.cuda()
print("Visualizer loaded")
return "β
All services initialized successfully!"
except Exception as e:
import traceback
return f"β Failed to initialize services: {str(e)}\n{traceback.format_exc()}"
def validate_image_dimensions(image):
"""Validate image dimensions before GPU allocation.
Returns (is_valid, message)
"""
if image is None:
return True, "" # Allow None to pass through
# Handle PIL Image or numpy array
if isinstance(image, np.ndarray):
img_pil = Image.fromarray(image)
else:
img_pil = image
# Check dimensions: width must be >= height (landscape orientation)
width, height = img_pil.size
if width < height:
error_msg = f"β Please upload a landscape image (width β₯ height).\nCurrent image: {width}x{height} (portrait orientation)"
return False, error_msg
return True, ""
def validate_and_process_wrapper(image, session_state, progress=gr.Progress()):
"""Wrapper function to validate image before GPU allocation"""
# Skip processing if image is None (intermediate state during replacement)
if image is None:
return ("Waiting for image upload...",
gr.update(interactive=False),
None,
False,
False,
session_state)
# Validate image dimensions BEFORE GPU allocation
is_valid, error_msg = validate_image_dimensions(image)
if not is_valid:
return (error_msg,
gr.update(interactive=False),
None,
False,
False,
session_state)
# If validation passes, proceed with GPU-intensive processing
return process_image_upload(image, session_state, progress)
@spaces.GPU(duration=120)
def process_image_upload(image, session_state, progress=gr.Progress()):
"""Process uploaded image and run hand reconstruction"""
global hand_reconstructor
if torch.cuda.is_available():
print("CUDA is available for image processing")
else:
print("CUDA is NOT available for image processing")
# Wait for GPU to be ready
import time
start_time = time.time()
while time.time() - start_time < 60: # Wait up to 60 seconds
try:
if torch.cuda.is_available():
torch.zeros(1).cuda()
break
except:
time.sleep(2)
if hand_reconstructor is None:
return ("Services not initialized. Please wait for initialization to complete.",
gr.update(interactive=False),
None,
False,
False,
session_state)
try:
progress(0, desc="Preparing image...")
# Handle PIL Image or numpy array
if isinstance(image, np.ndarray):
img_pil = Image.fromarray(image)
else:
img_pil = image
# Store image in session state for later use
session_state['current_image'] = img_pil
progress(0.2, desc="Running hand reconstruction...")
# Convert PIL to cv2 format for hand reconstruction
image_np = np.array(img_pil)
image_bgr = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
# Run hand reconstruction with image array
image_list = [image_bgr]
hand_data = hand_reconstructor.recon(image_list)
session_state['current_hand_data'] = hand_data
progress(1.0, desc="Hand reconstruction complete!")
# Check which hands were detected
has_left = 'left' in hand_data and len(hand_data['left']) > 0
has_right = 'right' in hand_data and len(hand_data['right']) > 0
info_msg = "β
Hand reconstruction complete!\n"
info_msg += f"Detected hands: "
if has_left and has_right:
info_msg += "Left β, Right β"
elif has_left:
info_msg += "Left β, Right β"
elif has_right:
info_msg += "Left β, Right β"
else:
info_msg += "None detected"
# Store checkbox states in session state for later retrieval
session_state['detected_left'] = has_left
session_state['detected_right'] = has_right
# Return status, generate button state, and data for next stage
# Checkbox updates are handled separately in .then() to avoid progress bar issues
return (info_msg,
gr.update(interactive=True),
hand_data, # Pass hand_data to hidden state
has_left, # Pass detection results for checkbox update
has_right,
session_state)
except Exception as e:
import traceback
error_msg = f"β Hand reconstruction failed: {str(e)}\n{traceback.format_exc()}"
# Store default states in session
session_state['detected_left'] = False
session_state['detected_right'] = False
# Return error state
return (error_msg,
gr.update(interactive=True),
None, # Empty hand_data
False, # No left hand detected
False, # No right hand detected
session_state)
def update_checkboxes(has_left, has_right):
"""Update checkbox states based on detected hands (no progress bar)"""
# If only one hand detected, disable the other checkbox with gray styling
left_checkbox_update = gr.update(
value=has_left,
interactive=True if has_left else False,
elem_classes="disabled-checkbox" if not has_left else ""
)
right_checkbox_update = gr.update(
value=has_right,
interactive=True if has_right else False,
elem_classes="disabled-checkbox" if not has_right else ""
)
# Update instruction textboxes based on detected hands with gray styling
left_instruction_update = gr.update(
interactive=has_left,
elem_classes="disabled-textbox" if not has_left else ""
)
right_instruction_update = gr.update(
interactive=has_right,
elem_classes="disabled-textbox" if not has_right else ""
)
return left_checkbox_update, right_checkbox_update, left_instruction_update, right_instruction_update
def update_instruction_interactivity(use_left, use_right):
"""Update instruction textbox interactivity based on checkbox states"""
left_update = gr.update(
interactive=use_left,
elem_classes="disabled-textbox" if not use_left else ""
)
right_update = gr.update(
interactive=use_right,
elem_classes="disabled-textbox" if not use_right else ""
)
return left_update, right_update
def update_final_instruction(left_instruction, right_instruction, use_left, use_right):
"""Update final instruction based on left/right inputs and checkbox states"""
# Override with 'None.' if checkbox is not selected
left_text = left_instruction if use_left else "None."
right_text = right_instruction if use_right else "None."
final = f"Left hand: {left_text} Right hand: {right_text}"
# Return styled Markdown
styled_output = f"""<div style='padding: 12px; background-color: #f0f7ff; border-left: 4px solid #4A90E2; border-radius: 4px; margin-top: 10px;'>
<strong style='color: #2c5282;'>π Final Instruction:</strong><br>
<span style='color: #1a365d; font-size: 14px;'>{final}</span>
</div>"""
# Return both styled version and plain text
return gr.update(value=styled_output), final
def parse_instruction(instruction_text):
"""Parse combined instruction into left and right parts"""
import re
# Try to match patterns like "Left hand: ... Right hand: ..." or "Left: ... Right: ..."
left_match = re.search(r'Left(?:\s+hand)?:\s*([^.]*(?:\.[^LR]*)*)(?=Right|$)', instruction_text, re.IGNORECASE)
right_match = re.search(r'Right(?:\s+hand)?:\s*(.+?)$', instruction_text, re.IGNORECASE)
left_text = left_match.group(1).strip() if left_match else "None."
right_text = right_match.group(1).strip() if right_match else "None."
return left_text, right_text
@spaces.GPU(duration=120)
def generate_prediction(instruction, use_left, use_right, sample_times, num_ddim_steps, cfg_scale, hand_data, image, progress=gr.Progress()):
"""Generate hand motion prediction and visualization"""
global vla_model, vla_normalizer, visualizer, hand_config, app_config
# Wait for GPU to be ready
import time
start_time = time.time()
while time.time() - start_time < 60: # Wait up to 60 seconds
try:
if torch.cuda.is_available():
torch.zeros(1).cuda()
break
except:
time.sleep(2)
if hand_data is None:
return None, "Please upload an image and wait for hand reconstruction first"
if not use_left and not use_right:
return None, "Please select at least one hand (left or right)"
try:
progress(0, desc="Preparing data...")
# Use passed parameters instead of global variables
if image is None:
return None, "Image not found. Please upload an image first."
ori_w, ori_h = image.size
try:
image = ImageOps.exif_transpose(image)
except Exception:
pass
image_resized = resize_short_side_to_target(image, target=224)
w, h = image_resized.size
# Initialize state
current_state_left = None
current_state_right = None
beta_left = None
beta_right = None
progress(0.1, desc="Extracting hand states...")
if use_right:
current_state_right, beta_right, fov_x, _ = get_state(hand_data, hand_side='right')
if use_left:
current_state_left, beta_left, fov_x, _ = get_state(hand_data, hand_side='left')
fov_x = fov_x * np.pi / 180
f_ori = ori_w / np.tan(fov_x / 2) / 2
fov_y = 2 * np.arctan(ori_h / (2 * f_ori))
f = w / np.tan(fov_x / 2) / 2
intrinsics = np.array([
[f, 0, w/2],
[0, f, h/2],
[0, 0, 1]
])
# Concatenate left and right hand states
if current_state_left is None and current_state_right is None:
return None, "No valid hand states found"
state_left = current_state_left if use_left else np.zeros_like(current_state_right)
beta_left = beta_left if use_left else np.zeros_like(beta_right)
state_right = current_state_right if use_right else np.zeros_like(current_state_left)
beta_right = beta_right if use_right else np.zeros_like(beta_left)
state = np.concatenate([state_left, beta_left, state_right, beta_right], axis=0)
state_mask = np.array([use_left, use_right], dtype=bool)
# Get chunk size from config
configs = load_config(app_config.config_path)
chunk_size = configs.get('fwd_pred_next_n', 16)
action_mask = np.tile(np.array([[use_left, use_right]], dtype=bool), (chunk_size, 1))
fov = np.array([fov_x, fov_y], dtype=np.float32)
image_resized_np = np.array(image_resized)
progress(0.3, desc="Running VLA inference...")
# Run VLA inference
unnorm_action = vla_predict(
model=vla_model,
normalizer=vla_normalizer,
image=image_resized_np,
instruction=instruction,
state=state,
state_mask=state_mask,
action_mask=action_mask,
fov=fov,
num_ddim_steps=num_ddim_steps,
cfg_scale=cfg_scale,
sample_times=sample_times,
)
progress(0.6, desc="Visualizing predictions...")
# Setup renderer
fx_exo = intrinsics[0, 0]
fy_exo = intrinsics[1, 1]
renderer = Renderer(w, h, (fx_exo, fy_exo), 'cuda')
T = chunk_size + 1
traj_right_list = np.zeros((sample_times, T, 51), dtype=np.float32)
traj_left_list = np.zeros((sample_times, T, 51), dtype=np.float32)
traj_mask = np.tile(np.array([[use_left, use_right]], dtype=bool), (T, 1))
left_hand_mask = traj_mask[:, 0]
right_hand_mask = traj_mask[:, 1]
hand_mask = (left_hand_mask, right_hand_mask)
all_rendered_frames = []
# Reconstruct trajectories and visualize for each sample
for i in range(sample_times):
progress(0.6 + 0.3 * (i / sample_times), desc=f"Rendering sample {i+1}/{sample_times}...")
traj_right = traj_right_list[i]
traj_left = traj_left_list[i]
if use_left:
traj_left = recon_traj(
state=state_left,
rel_action=unnorm_action[i, :, 0:51],
)
if use_right:
traj_right = recon_traj(
state=state_right,
rel_action=unnorm_action[i, :, 51:102],
)
left_hand_labels = {
'transl_worldspace': traj_left[:, 0:3],
'global_orient_worldspace': R.from_euler('xyz', traj_left[:, 3:6]).as_matrix(),
'hand_pose': euler_traj_to_rotmat_traj(traj_left[:, 6:51], T),
'beta': beta_left,
}
right_hand_labels = {
'transl_worldspace': traj_right[:, 0:3],
'global_orient_worldspace': R.from_euler('xyz', traj_right[:, 3:6]).as_matrix(),
'hand_pose': euler_traj_to_rotmat_traj(traj_right[:, 6:51], T),
'beta': beta_right,
}
verts_left_worldspace, _ = process_single_hand_labels(left_hand_labels, left_hand_mask, visualizer.mano, is_left=True)
verts_right_worldspace, _ = process_single_hand_labels(right_hand_labels, right_hand_mask, visualizer.mano, is_left=False)
hand_traj_wordspace = (verts_left_worldspace, verts_right_worldspace)
R_w2c = np.broadcast_to(np.eye(3), (T, 3, 3)).copy()
t_w2c = np.zeros((T, 3, 1), dtype=np.float32)
extrinsics = (R_w2c, t_w2c)
image_bgr = image_resized_np[..., ::-1]
resize_video_frames = [image_bgr] * T
save_frames = visualizer._render_hand_trajectory(
resize_video_frames,
hand_traj_wordspace,
hand_mask,
extrinsics,
renderer,
mode='first'
)
all_rendered_frames.append(save_frames)
progress(0.95, desc="Creating output video...")
# Combine all samples into grid layout
num_frames = len(all_rendered_frames[0])
grid_cols = math.ceil(math.sqrt(sample_times))
grid_rows = math.ceil(sample_times / grid_cols)
combined_frames = []
for frame_idx in range(num_frames):
sample_frames = [all_rendered_frames[i][frame_idx] for i in range(sample_times)]
while len(sample_frames) < grid_rows * grid_cols:
black_frame = np.zeros_like(sample_frames[0])
sample_frames.append(black_frame)
rows = []
for row_idx in range(grid_rows):
row_frames = sample_frames[row_idx * grid_cols:(row_idx + 1) * grid_cols]
row_concat = np.concatenate(row_frames, axis=1)
rows.append(row_concat)
combined_frame = np.concatenate(rows, axis=0)
combined_frames.append(combined_frame)
# Save video
output_dir = Path("./temp_gradio/outputs")
output_dir.mkdir(parents=True, exist_ok=True)
output_path = output_dir / "prediction.mp4"
save_to_video(combined_frames, str(output_path), fps=hand_config.FPS)
progress(1.0, desc="Complete!")
return str(output_path), f"β
Generated {sample_times} prediction samples successfully!"
except Exception as e:
import traceback
error_msg = f"β Prediction failed: {str(e)}\n{traceback.format_exc()}"
return None, error_msg
def load_examples():
"""Automatically load all image examples from the examples folder"""
examples_dir = Path(__file__).parent / "examples"
# Default instructions for examples (mapping from filename to instruction)
default_instructions = {
"0001.jpg": "Left hand: Put the trash into the garbage. Right hand: None.",
"0002.jpg": "Left hand: None. Right hand: Pick up the picture of Michael Jackson.",
"0003.png": "Left hand: None. Right hand: Pick up the metal water cup.",
"0004.jpg": "Left hand: Squeeze the dish sponge. Right hand: None.",
"0005.jpg": "Left hand: None. Right hand: Cut the meat with the knife.",
"0006.jpg": "Left hand: Open the closet door. Right hand: None.",
"0007.jpg": "Left hand: None. Right hand: Cut the paper with the scissors.",
"0008.jpg": "Left hand: Wipe the countertop with the cloth. Right hand: None.",
"0009.jpg": "Left hand: None. Right hand: Open the cabinet door.",
"0010.png": "Left hand: None. Right hand: Turn on the faucet.",
"0011.jpg": "Left hand: Put the drink bottle into the trash can. Right hand: None.",
"0012.jpg": "Left hand: None. Right hand: Pick up the gray cup from the cabinet.",
"0013.jpg": "Left hand: None. Right hand: Take the milk bottle out of the fridge.",
"0014.jpg": "Left hand: None. Right hand: ζΏθ΅·ζ°ηγ",
"0015.jpg": "Left hand: None. Right hand: Pick up the picture with the smaller red heart.",
"0016.jpg": "Left hand: None. Right hand: Pick up the picture with \"Cat\".",
"0017.jpg": "Left hand: None. Right hand: Pick up the picture of the Statue of Liberty.",
"0018.jpg": "Left hand: None. Right hand: Pick up the picture of the two people.",
}
examples_images = []
instructions_map = {}
if examples_dir.exists():
# Get all image files
image_files = sorted([f for f in examples_dir.iterdir()
if f.suffix.lower() in ['.jpg', '.jpeg', '.png']])
for img_path in image_files:
img_path_str = str(img_path)
instruction = default_instructions.get(
img_path.name,
"Left hand: Perform the action. Right hand: None."
)
# Only store image path for display
examples_images.append([img_path_str])
# Store instruction mapping
instructions_map[img_path_str] = instruction
return examples_images, instructions_map
def get_instruction_for_image(image_path, instructions_map):
"""Get the instruction for a given image path"""
if image_path is None:
return gr.update()
# Find matching instruction
instruction = instructions_map.get(str(image_path), "")
return instruction
def create_gradio_interface():
"""Create Gradio interface"""
with gr.Blocks(delete_cache=(600, 600), title="3D Hand Motion Prediction with VITRA") as demo:
# Inject custom CSS for disabled elements styling
gr.HTML("""
<style>
.disabled-checkbox {
opacity: 0.5 !important;
pointer-events: none !important;
}
.disabled-textbox textarea {
background-color: #f5f5f5 !important;
color: #9e9e9e !important;
cursor: not-allowed !important;
}
</style>
""")
gr.HTML("""
<div align="center">
<h1> π€ Hand Action Prediction with <a href="https://microsoft.github.io/VITRA/" target="_blank" style="text-decoration: underline; font-weight: bold; color: #4A90E2;">VITRA</a> <a title="Github" href="https://github.com/microsoft/VITRA" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> <img src="https://img.shields.io/github/stars/microsoft/VITRA?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> </a> </h1>
</div>
<div style="line-height: 1.8;">
<br>
<p style="font-size: 16px;">Upload a <strong style="color: #7C4DFF;">landscape</strong>, <strong style="color: #7C4DFF;">egocentric (first-person)</strong> image containing hand(s) and provide instructions to predict future 3D hand trajectories.</p>
<h3>π Steps:</h3>
<ol>
<li>Upload an landscape view image containing hand(s).</li>
<li>Enter text instructions describing the desired task.</li>
<li>Configure advanced settings (Optional) and click "Generate 3D Hand Trajectory".</li>
</ol>
<h3>π‘ Tips:</h3>
<ul>
<li><strong>Use Left/Right Hand</strong>: Select which hand to predict based on what's detected and what you want to predict.</li>
<li><strong>Instruction</strong>: Provide clear and specific imperative instructions separately for the left and right hands, and enter them in the corresponding fields. If the results are unsatisfactory, <strong style="color: #7C4DFF;">try providing more detailed instructions</strong> (e.g., color, orientation, etc.).</li>
<li>For best inference quality, it is recommended to <strong style="color: #7C4DFF;">capture landscape view images from a camera height close to that of a human head</strong>. Highly unusual or distorted hand poses/positions may cause inference failures.</li>
<li>It is worth noting that each generation produces only a single action chunking starting from the current state, which <strong style="color: #7C4DFF;">does not necessarily complete the entire task</strong>. Executing an entire chunking in one step may lead to reduced precision.</li>
</ul>
</div>
<hr style='border: none; border-top: 1px solid #e0e0e0; margin: 20px 0;'>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("""
<div style='background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 15px; border-radius: 8px; margin-bottom: 15px;'>
<h3 style='color: white; margin: 0; text-align: center;'>π Input</h3>
</div>
""")
# Image upload
input_image = gr.Image(
label="πΌοΈ Upload Image with Hands",
type="pil",
height=300,
)
# Hand reconstruction status
recon_status = gr.Textbox(
label="π Hand Reconstruction Status",
value="β³ Waiting for image upload...",
interactive=False,
lines=2,
container=True
)
gr.Markdown("---")
gr.HTML("""
<div style='background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 15px; border-radius: 8px; margin-bottom: 15px;'>
<h3 style='color: white; margin: 0; text-align: center;'>βοΈ Prediction Settings</h3>
</div>
""")
gr.HTML("""
<div style='padding: 8px; background-color: #e8eaf6; border-left: 4px solid #5c6bc0; border-radius: 4px; margin-bottom: 10px;'>
<strong style='color: #3949ab;'>π Select Hands:</strong>
</div>
""")
with gr.Row():
use_left = gr.Checkbox(label="Use Left Hand", value=True)
use_right = gr.Checkbox(label="Use Right Hand", value=True)
# Separate instruction inputs for left and right hands
gr.HTML("""
<div style='padding: 8px; background-color: #e8eaf6; border-left: 4px solid #5c6bc0; border-radius: 4px; margin: 15px 0 10px 0;'>
<strong style='color: #3949ab;'>βοΈ Instructions:</strong>
</div>
""")
with gr.Row():
with gr.Column():
with gr.Row():
gr.HTML("<div style='display: flex; align-items: center; min-height: 40px; padding-right: 2px;'><span style='font-weight: 600; color: #5c6bc0; white-space: nowrap;'>Left hand:</span></div>")
left_instruction = gr.Textbox(
label="",
value="Put the trash into the garbage.",
lines=1,
max_lines=5,
placeholder="Describe left hand action...",
show_label=False,
interactive=True,
scale=3
)
with gr.Column():
with gr.Row():
gr.HTML("<div style='display: flex; align-items: center; min-height: 40px; padding-right: 2px;'><span style='font-weight: 600; color: #5c6bc0; white-space: nowrap;'>Right hand:</span></div>")
right_instruction = gr.Textbox(
label="",
value="None.",
lines=1,
max_lines=5,
placeholder="Describe right hand action...",
show_label=False,
interactive=True,
scale=3
)
# Final instruction display (read-only, styled)
final_instruction = gr.HTML(
value="""<div style='padding: 12px; background-color: #f0f7ff; border-left: 4px solid #4A90E2; border-radius: 4px; margin-top: 10px;'>
<strong style='color: #2c5282;'>π Final Instruction:</strong><br>
<span style='color: #1a365d; font-size: 14px;'>Left hand: Put the trash into the garbage. Right hand: None.</span>
</div>""",
show_label=False
)
final_instruction_text = gr.State(value="Left hand: Put the trash into the garbage. Right hand: None.")
# Advanced settings
with gr.Accordion("π§ Advanced Settings", open=False):
sample_times = gr.Slider(
minimum=1,
maximum=9,
value=4,
step=1,
label="Number of Samples",
info="Multiple samples show different possible trajectories."
)
num_ddim_steps = gr.Slider(
minimum=1,
maximum=50,
value=10,
step=5,
label="DDIM Steps",
info="DDIM steps of the diffusion model. 10 is usually sufficient."
)
cfg_scale = gr.Slider(
minimum=1.0,
maximum=15.0,
value=5.0,
step=0.5,
label="CFG Scale",
info="Classifier-free guidance scale of the diffusion model."
)
# Generate button
generate_btn = gr.Button("π¬ Generate 3D Hand Trajectory", variant="primary", size="lg")
# Hidden states to pass data between @spaces.GPU functions
hand_data = gr.State(value=None)
detected_left = gr.State(value=False)
detected_right = gr.State(value=False)
# Session state to store per-user data (isolates multi-user sessions)
session_state = gr.State(value={})
with gr.Column(scale=1):
gr.HTML("""
<div style='background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%); padding: 15px; border-radius: 8px; margin-bottom: 15px;'>
<h3 style='color: white; margin: 0; text-align: center;'>π¬ Output</h3>
</div>
""")
# Output video
output_video = gr.Video(
label="π¬ Predicted Hand Motion",
height=500,
autoplay=True
)
# Generation status
gen_status = gr.Textbox(
label="π Generation Status",
value="",
interactive=False,
lines=2
)
# Examples section - show only images, auto-fill instructions on click
gr.Markdown("---")
gr.HTML("""
<div style='background: linear-gradient(135deg, #89f7fe 0%, #66a6ff 100%); padding: 15px; border-radius: 8px; margin: 20px 0 10px 0;'>
<h3 style='color: white; margin: 0; text-align: center;'>π Examples</h3>
</div>
""")
gr.HTML("""
<div style='padding: 10px; background-color: #e7f3ff; border-left: 4px solid #2196F3; border-radius: 4px; margin-bottom: 15px;'>
<span style='color: #1565c0;'>π Click any example below to load the image and instruction</span>
</div>
""")
examples_images, instructions_map = load_examples()
# Use Gallery to display example images
example_gallery = gr.Gallery(
value=[img[0] for img in examples_images],
label="",
columns=6,
height="450",
object_fit="contain",
show_label=False
)
# Handle gallery selection - load image and corresponding instruction
def load_example_from_gallery(evt: gr.SelectData):
selected_index = evt.index
if selected_index < len(examples_images):
img_path = examples_images[selected_index][0]
instruction_text = instructions_map.get(img_path, "")
# Parse instruction into left and right parts
left_text, right_text = parse_instruction(instruction_text)
# Return updates and disable generate button (will be re-enabled after reconstruction)
return gr.update(value=img_path), gr.update(value=left_text), gr.update(value=right_text), gr.update(interactive=False)
return gr.update(), gr.update(), gr.update(), gr.update()
example_gallery.select(
fn=load_example_from_gallery,
inputs=[],
outputs=[input_image, left_instruction, right_instruction, generate_btn],
show_progress=False # Disable progress to reduce UI updates
).then(
fn=update_final_instruction,
inputs=[left_instruction, right_instruction, use_left, use_right],
outputs=[final_instruction, final_instruction_text],
show_progress=False
)
# Event handlers
# Use only change event to handle all image updates (upload, drag-and-drop, example selection)
# This prevents duplicate processing that occurs when both upload and change events fire
input_image.change(
fn=validate_and_process_wrapper,
inputs=[input_image, session_state],
outputs=[recon_status, generate_btn, hand_data, detected_left, detected_right, session_state],
show_progress='full' # Show progress bar for reconstruction
).then(
fn=update_checkboxes,
inputs=[detected_left, detected_right],
outputs=[use_left, use_right, left_instruction, right_instruction],
show_progress=False # Don't show progress for checkbox update
)
# Update instruction textbox interactivity when checkboxes change
use_left.change(
fn=update_instruction_interactivity,
inputs=[use_left, use_right],
outputs=[left_instruction, right_instruction],
show_progress=False
).then(
fn=update_final_instruction,
inputs=[left_instruction, right_instruction, use_left, use_right],
outputs=[final_instruction, final_instruction_text],
show_progress=False
)
use_right.change(
fn=update_instruction_interactivity,
inputs=[use_left, use_right],
outputs=[left_instruction, right_instruction],
show_progress=False
).then(
fn=update_final_instruction,
inputs=[left_instruction, right_instruction, use_left, use_right],
outputs=[final_instruction, final_instruction_text],
show_progress=False
)
# Update final instruction when left or right instruction changes
left_instruction.change(
fn=update_final_instruction,
inputs=[left_instruction, right_instruction, use_left, use_right],
outputs=[final_instruction, final_instruction_text],
show_progress=False
)
right_instruction.change(
fn=update_final_instruction,
inputs=[left_instruction, right_instruction, use_left, use_right],
outputs=[final_instruction, final_instruction_text],
show_progress=False
)
generate_btn.click(
fn=generate_prediction,
inputs=[final_instruction_text, use_left, use_right, sample_times, num_ddim_steps, cfg_scale, hand_data, input_image],
outputs=[output_video, gen_status],
show_progress='full'
)
return demo
if __name__ == "__main__":
"""launch Gradio app"""
# Initialize services
print("Initializing services...")
init_msg = initialize_services()
print(init_msg)
if "Failed" in init_msg:
print("β οΈ Services failed to initialize. Please check the configuration and try again.")
# Create and launch Gradio interface
demo = create_gradio_interface()
# Launch with share=True to create public link, or share=False for local only
demo.launch() |