from typing import * import torch import torch.nn as nn import torch.nn.functional as F from .. import VarLenTensor, SparseTensor from .full_attn import sparse_scaled_dot_product_attention from .windowed_attn import sparse_windowed_scaled_dot_product_self_attention from .rope import SparseRotaryPositionEmbedder class SparseMultiHeadRMSNorm(nn.Module): def __init__(self, dim: int, heads: int): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(heads, dim)) def forward(self, x: Union[VarLenTensor, torch.Tensor]) -> Union[VarLenTensor, torch.Tensor]: x_type = x.dtype x = x.float() if isinstance(x, VarLenTensor): x = x.replace(F.normalize(x.feats, dim=-1) * self.gamma * self.scale) else: x = F.normalize(x, dim=-1) * self.gamma * self.scale return x.to(x_type) class SparseMultiHeadAttention(nn.Module): def __init__( self, channels: int, num_heads: int, ctx_channels: Optional[int] = None, type: Literal["self", "cross"] = "self", attn_mode: Literal["full", "windowed", "double_windowed"] = "full", window_size: Optional[int] = None, shift_window: Optional[Tuple[int, int, int]] = None, qkv_bias: bool = True, use_rope: bool = False, rope_freq: Tuple[int, int] = (1.0, 10000.0), qk_rms_norm: bool = False, ): super().__init__() assert channels % num_heads == 0 assert type in ["self", "cross"], f"Invalid attention type: {type}" assert attn_mode in ["full", "windowed", "double_windowed"], f"Invalid attention mode: {attn_mode}" assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention" assert type == "self" or use_rope is False, "Rotary position embeddings only supported for self-attention" if attn_mode == 'double_windowed': assert window_size % 2 == 0, "Window size must be even for double windowed attention" assert num_heads % 2 == 0, "Number of heads must be even for double windowed attention" self.channels = channels self.head_dim = channels // num_heads self.ctx_channels = ctx_channels if ctx_channels is not None else channels self.num_heads = num_heads self._type = type self.attn_mode = attn_mode self.window_size = window_size self.shift_window = shift_window self.use_rope = use_rope self.qk_rms_norm = qk_rms_norm if self._type == "self": self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias) else: self.to_q = nn.Linear(channels, channels, bias=qkv_bias) self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias) if self.qk_rms_norm: self.q_rms_norm = SparseMultiHeadRMSNorm(self.head_dim, num_heads) self.k_rms_norm = SparseMultiHeadRMSNorm(self.head_dim, num_heads) self.to_out = nn.Linear(channels, channels) if use_rope: self.rope = SparseRotaryPositionEmbedder(self.head_dim, rope_freq=rope_freq) @staticmethod def _linear(module: nn.Linear, x: Union[VarLenTensor, torch.Tensor]) -> Union[VarLenTensor, torch.Tensor]: if isinstance(x, VarLenTensor): return x.replace(module(x.feats)) else: return module(x) @staticmethod def _reshape_chs(x: Union[VarLenTensor, torch.Tensor], shape: Tuple[int, ...]) -> Union[VarLenTensor, torch.Tensor]: if isinstance(x, VarLenTensor): return x.reshape(*shape) else: return x.reshape(*x.shape[:2], *shape) def _fused_pre(self, x: Union[VarLenTensor, torch.Tensor], num_fused: int) -> Union[VarLenTensor, torch.Tensor]: if isinstance(x, VarLenTensor): x_feats = x.feats.unsqueeze(0) else: x_feats = x x_feats = x_feats.reshape(*x_feats.shape[:2], num_fused, self.num_heads, -1) return x.replace(x_feats.squeeze(0)) if isinstance(x, VarLenTensor) else x_feats def forward(self, x: SparseTensor, context: Optional[Union[VarLenTensor, torch.Tensor]] = None) -> SparseTensor: if self._type == "self": qkv = self._linear(self.to_qkv, x) qkv = self._fused_pre(qkv, num_fused=3) if self.qk_rms_norm or self.use_rope: q, k, v = qkv.unbind(dim=-3) if self.qk_rms_norm: q = self.q_rms_norm(q) k = self.k_rms_norm(k) if self.use_rope: q, k = self.rope(q, k) qkv = qkv.replace(torch.stack([q.feats, k.feats, v.feats], dim=1)) if self.attn_mode == "full": h = sparse_scaled_dot_product_attention(qkv) elif self.attn_mode == "windowed": h = sparse_windowed_scaled_dot_product_self_attention( qkv, self.window_size, shift_window=self.shift_window ) elif self.attn_mode == "double_windowed": qkv0 = qkv.replace(qkv.feats[:, :, self.num_heads//2:]) qkv1 = qkv.replace(qkv.feats[:, :, :self.num_heads//2]) h0 = sparse_windowed_scaled_dot_product_self_attention( qkv0, self.window_size, shift_window=(0, 0, 0) ) h1 = sparse_windowed_scaled_dot_product_self_attention( qkv1, self.window_size, shift_window=tuple([self.window_size//2] * 3) ) h = qkv.replace(torch.cat([h0.feats, h1.feats], dim=1)) else: q = self._linear(self.to_q, x) q = self._reshape_chs(q, (self.num_heads, -1)) kv = self._linear(self.to_kv, context) kv = self._fused_pre(kv, num_fused=2) if self.qk_rms_norm: q = self.q_rms_norm(q) k, v = kv.unbind(dim=-3) k = self.k_rms_norm(k) h = sparse_scaled_dot_product_attention(q, k, v) else: h = sparse_scaled_dot_product_attention(q, kv) h = self._reshape_chs(h, (-1,)) h = self._linear(self.to_out, h) return h