from typing import * import torch import torch.nn.functional as F from torchvision import transforms from transformers import DINOv3ViTModel import numpy as np from PIL import Image class DinoV2FeatureExtractor: """ Feature extractor for DINOv2 models. """ def __init__(self, model_name: str): self.model_name = model_name self.model = torch.hub.load('facebookresearch/dinov2', model_name, pretrained=True) self.model.eval() self.transform = transforms.Compose([ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def to(self, device): self.model.to(device) def cuda(self): self.model.cuda() def cpu(self): self.model.cpu() @torch.no_grad() def __call__(self, image: Union[torch.Tensor, List[Image.Image]]) -> torch.Tensor: """ Extract features from the image. Args: image: A batch of images as a tensor of shape (B, C, H, W) or a list of PIL images. Returns: A tensor of shape (B, N, D) where N is the number of patches and D is the feature dimension. """ if isinstance(image, torch.Tensor): assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)" elif isinstance(image, list): assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images" image = [i.resize((518, 518), Image.LANCZOS) for i in image] image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image] image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image] image = torch.stack(image).cuda() else: raise ValueError(f"Unsupported type of image: {type(image)}") image = self.transform(image).cuda() features = self.model(image, is_training=True)['x_prenorm'] patchtokens = F.layer_norm(features, features.shape[-1:]) return patchtokens class DinoV3FeatureExtractor: """ Feature extractor for DINOv3 models. """ def __init__(self, model_name: str, image_size=512): self.model_name = model_name self.model = DINOv3ViTModel.from_pretrained(model_name) self.model.eval() self.image_size = image_size self.transform = transforms.Compose([ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def to(self, device): self.model.to(device) def cuda(self): self.model.cuda() def cpu(self): self.model.cpu() def extract_features(self, image: torch.Tensor) -> torch.Tensor: image = image.to(self.model.embeddings.patch_embeddings.weight.dtype) hidden_states = self.model.embeddings(image, bool_masked_pos=None) position_embeddings = self.model.rope_embeddings(image) for i, layer_module in enumerate(self.model.layer): hidden_states = layer_module( hidden_states, position_embeddings=position_embeddings, ) return F.layer_norm(hidden_states, hidden_states.shape[-1:]) @torch.no_grad() def __call__(self, image: Union[torch.Tensor, List[Image.Image]]) -> torch.Tensor: """ Extract features from the image. Args: image: A batch of images as a tensor of shape (B, C, H, W) or a list of PIL images. Returns: A tensor of shape (B, N, D) where N is the number of patches and D is the feature dimension. """ if isinstance(image, torch.Tensor): assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)" elif isinstance(image, list): assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images" image = [i.resize((self.image_size, self.image_size), Image.LANCZOS) for i in image] image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image] image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image] image = torch.stack(image).cuda() else: raise ValueError(f"Unsupported type of image: {type(image)}") image = self.transform(image).cuda() features = self.extract_features(image) return features