Spaces:
Running
on
Zero
Running
on
Zero
| from typing import * | |
| import torch | |
| from easydict import EasyDict as edict | |
| from ..representations.mesh import Mesh, MeshWithVoxel, MeshWithPbrMaterial, TextureFilterMode, AlphaMode, TextureWrapMode | |
| import torch.nn.functional as F | |
| def intrinsics_to_projection( | |
| intrinsics: torch.Tensor, | |
| near: float, | |
| far: float, | |
| ) -> torch.Tensor: | |
| """ | |
| OpenCV intrinsics to OpenGL perspective matrix | |
| Args: | |
| intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix | |
| near (float): near plane to clip | |
| far (float): far plane to clip | |
| Returns: | |
| (torch.Tensor): [4, 4] OpenGL perspective matrix | |
| """ | |
| fx, fy = intrinsics[0, 0], intrinsics[1, 1] | |
| cx, cy = intrinsics[0, 2], intrinsics[1, 2] | |
| ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device) | |
| ret[0, 0] = 2 * fx | |
| ret[1, 1] = 2 * fy | |
| ret[0, 2] = 2 * cx - 1 | |
| ret[1, 2] = - 2 * cy + 1 | |
| ret[2, 2] = (far + near) / (far - near) | |
| ret[2, 3] = 2 * near * far / (near - far) | |
| ret[3, 2] = 1. | |
| return ret | |
| class MeshRenderer: | |
| """ | |
| Renderer for the Mesh representation. | |
| Args: | |
| rendering_options (dict): Rendering options. | |
| """ | |
| def __init__(self, rendering_options={}, device='cuda'): | |
| if 'dr' not in globals(): | |
| import nvdiffrast.torch as dr | |
| self.rendering_options = edict({ | |
| "resolution": None, | |
| "near": None, | |
| "far": None, | |
| "ssaa": 1, | |
| "chunk_size": None, | |
| "antialias": True, | |
| "clamp_barycentric_coords": False, | |
| }) | |
| self.rendering_options.update(rendering_options) | |
| self.glctx = dr.RasterizeCudaContext(device=device) | |
| self.device=device | |
| def render( | |
| self, | |
| mesh : Mesh, | |
| extrinsics: torch.Tensor, | |
| intrinsics: torch.Tensor, | |
| return_types = ["mask", "normal", "depth"], | |
| transformation : Optional[torch.Tensor] = None | |
| ) -> edict: | |
| """ | |
| Render the mesh. | |
| Args: | |
| mesh : meshmodel | |
| extrinsics (torch.Tensor): (4, 4) camera extrinsics | |
| intrinsics (torch.Tensor): (3, 3) camera intrinsics | |
| return_types (list): list of return types, can be "attr", "mask", "depth", "coord", "normal" | |
| Returns: | |
| edict based on return_types containing: | |
| attr (torch.Tensor): [C, H, W] rendered attr image | |
| depth (torch.Tensor): [H, W] rendered depth image | |
| normal (torch.Tensor): [3, H, W] rendered normal image | |
| mask (torch.Tensor): [H, W] rendered mask image | |
| """ | |
| if 'dr' not in globals(): | |
| import nvdiffrast.torch as dr | |
| resolution = self.rendering_options["resolution"] | |
| near = self.rendering_options["near"] | |
| far = self.rendering_options["far"] | |
| ssaa = self.rendering_options["ssaa"] | |
| chunk_size = self.rendering_options["chunk_size"] | |
| antialias = self.rendering_options["antialias"] | |
| clamp_barycentric_coords = self.rendering_options["clamp_barycentric_coords"] | |
| if mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0: | |
| ret_dict = edict() | |
| for type in return_types: | |
| if type == "mask" : | |
| ret_dict[type] = torch.zeros((resolution, resolution), dtype=torch.float32, device=self.device) | |
| elif type == "depth": | |
| ret_dict[type] = torch.zeros((resolution, resolution), dtype=torch.float32, device=self.device) | |
| elif type == "normal": | |
| ret_dict[type] = torch.full((3, resolution, resolution), 0.5, dtype=torch.float32, device=self.device) | |
| elif type == "coord": | |
| ret_dict[type] = torch.zeros((3, resolution, resolution), dtype=torch.float32, device=self.device) | |
| elif type == "attr": | |
| if isinstance(mesh, MeshWithVoxel): | |
| ret_dict[type] = torch.zeros((mesh.attrs.shape[-1], resolution, resolution), dtype=torch.float32, device=self.device) | |
| else: | |
| ret_dict[type] = torch.zeros((mesh.vertex_attrs.shape[-1], resolution, resolution), dtype=torch.float32, device=self.device) | |
| return ret_dict | |
| perspective = intrinsics_to_projection(intrinsics, near, far) | |
| full_proj = (perspective @ extrinsics).unsqueeze(0) | |
| extrinsics = extrinsics.unsqueeze(0) | |
| vertices = mesh.vertices.unsqueeze(0) | |
| vertices_homo = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1) | |
| if transformation is not None: | |
| vertices_homo = torch.bmm(vertices_homo, transformation.unsqueeze(0).transpose(-1, -2)) | |
| vertices = vertices_homo[..., :3].contiguous() | |
| vertices_camera = torch.bmm(vertices_homo, extrinsics.transpose(-1, -2)) | |
| vertices_clip = torch.bmm(vertices_homo, full_proj.transpose(-1, -2)) | |
| faces = mesh.faces | |
| if 'normal' in return_types: | |
| v0 = vertices_camera[0, mesh.faces[:, 0], :3] | |
| v1 = vertices_camera[0, mesh.faces[:, 1], :3] | |
| v2 = vertices_camera[0, mesh.faces[:, 2], :3] | |
| e0 = v1 - v0 | |
| e1 = v2 - v0 | |
| face_normal = torch.cross(e0, e1, dim=1) | |
| face_normal = F.normalize(face_normal, dim=1) | |
| face_normal = torch.where(torch.sum(face_normal * v0, dim=1, keepdim=True) > 0, face_normal, -face_normal) | |
| out_dict = edict() | |
| if chunk_size is None: | |
| rast, rast_db = dr.rasterize( | |
| self.glctx, vertices_clip, faces, (resolution * ssaa, resolution * ssaa) | |
| ) | |
| if clamp_barycentric_coords: | |
| rast[..., :2] = torch.clamp(rast[..., :2], 0, 1) | |
| rast[..., :2] /= torch.where(rast[..., :2].sum(dim=-1, keepdim=True) > 1, rast[..., :2].sum(dim=-1, keepdim=True), torch.ones_like(rast[..., :2])) | |
| for type in return_types: | |
| img = None | |
| if type == "mask" : | |
| img = (rast[..., -1:] > 0).float() | |
| if antialias: img = dr.antialias(img, rast, vertices_clip, faces) | |
| elif type == "depth": | |
| img = dr.interpolate(vertices_camera[..., 2:3].contiguous(), rast, faces)[0] | |
| if antialias: img = dr.antialias(img, rast, vertices_clip, faces) | |
| elif type == "normal" : | |
| img = dr.interpolate(face_normal.unsqueeze(0), rast, torch.arange(face_normal.shape[0], dtype=torch.int, device=self.device).unsqueeze(1).repeat(1, 3).contiguous())[0] | |
| if antialias: img = dr.antialias(img, rast, vertices_clip, faces) | |
| img = (img + 1) / 2 | |
| elif type == "coord": | |
| img = dr.interpolate(vertices, rast, faces)[0] | |
| if antialias: img = dr.antialias(img, rast, vertices_clip, faces) | |
| elif type == "attr": | |
| if isinstance(mesh, MeshWithVoxel): | |
| if 'grid_sample_3d' not in globals(): | |
| from flex_gemm.ops.grid_sample import grid_sample_3d | |
| mask = rast[..., -1:] > 0 | |
| xyz = dr.interpolate(vertices, rast, faces)[0] | |
| xyz = ((xyz - mesh.origin) / mesh.voxel_size).reshape(1, -1, 3) | |
| img = grid_sample_3d( | |
| mesh.attrs, | |
| torch.cat([torch.zeros_like(mesh.coords[..., :1]), mesh.coords], dim=-1), | |
| mesh.voxel_shape, | |
| xyz, | |
| mode='trilinear' | |
| ) | |
| img = img.reshape(1, resolution * ssaa, resolution * ssaa, mesh.attrs.shape[-1]) * mask | |
| elif isinstance(mesh, MeshWithPbrMaterial): | |
| tri_id = rast[0, :, :, -1:] | |
| mask = tri_id > 0 | |
| uv_coords = mesh.uv_coords.reshape(1, -1, 2) | |
| texc, texd = dr.interpolate( | |
| uv_coords, | |
| rast, | |
| torch.arange(mesh.uv_coords.shape[0] * 3, dtype=torch.int, device=self.device).reshape(-1, 3), | |
| rast_db=rast_db, | |
| diff_attrs='all' | |
| ) | |
| # Fix problematic texture coordinates | |
| texc = torch.nan_to_num(texc, nan=0.0, posinf=1e3, neginf=-1e3) | |
| texc = torch.clamp(texc, min=-1e3, max=1e3) | |
| texd = torch.nan_to_num(texd, nan=0.0, posinf=1e3, neginf=-1e3) | |
| texd = torch.clamp(texd, min=-1e3, max=1e3) | |
| mid = mesh.material_ids[(tri_id - 1).long()] | |
| imgs = { | |
| 'base_color': torch.zeros((resolution * ssaa, resolution * ssaa, 3), dtype=torch.float32, device=self.device), | |
| 'metallic': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device), | |
| 'roughness': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device), | |
| 'alpha': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device) | |
| } | |
| for id, mat in enumerate(mesh.materials): | |
| mat_mask = (mid == id).float() * mask.float() | |
| mat_texc = texc * mat_mask | |
| mat_texd = texd * mat_mask | |
| if mat.base_color_texture is not None: | |
| base_color = dr.texture( | |
| mat.base_color_texture.image.unsqueeze(0), | |
| mat_texc, | |
| mat_texd, | |
| filter_mode='linear-mipmap-linear' if mat.base_color_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest', | |
| boundary_mode='clamp' if mat.base_color_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap' | |
| )[0] | |
| imgs['base_color'] += base_color * mat.base_color_factor * mat_mask | |
| else: | |
| imgs['base_color'] += mat.base_color_factor * mat_mask | |
| if mat.metallic_texture is not None: | |
| metallic = dr.texture( | |
| mat.metallic_texture.image.unsqueeze(0), | |
| mat_texc, | |
| mat_texd, | |
| filter_mode='linear-mipmap-linear' if mat.metallic_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest', | |
| boundary_mode='clamp' if mat.metallic_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap' | |
| )[0] | |
| imgs['metallic'] += metallic * mat.metallic_factor * mat_mask | |
| else: | |
| imgs['metallic'] += mat.metallic_factor * mat_mask | |
| if mat.roughness_texture is not None: | |
| roughness = dr.texture( | |
| mat.roughness_texture.image.unsqueeze(0), | |
| mat_texc, | |
| mat_texd, | |
| filter_mode='linear-mipmap-linear' if mat.roughness_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest', | |
| boundary_mode='clamp' if mat.roughness_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap' | |
| )[0] | |
| imgs['roughness'] += roughness * mat.roughness_factor * mat_mask | |
| else: | |
| imgs['roughness'] += mat.roughness_factor * mat_mask | |
| if mat.alpha_mode == AlphaMode.OPAQUE: | |
| imgs['alpha'] += 1.0 * mat_mask | |
| else: | |
| if mat.alpha_texture is not None: | |
| alpha = dr.texture( | |
| mat.alpha_texture.image.unsqueeze(0), | |
| mat_texc, | |
| mat_texd, | |
| filter_mode='linear-mipmap-linear' if mat.alpha_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest', | |
| boundary_mode='clamp' if mat.alpha_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap' | |
| )[0] | |
| if mat.alpha_mode == AlphaMode.MASK: | |
| imgs['alpha'] += (alpha * mat.alpha_factor > mat.alpha_cutoff).float() * mat_mask | |
| elif mat.alpha_mode == AlphaMode.BLEND: | |
| imgs['alpha'] += alpha * mat.alpha_factor * mat_mask | |
| else: | |
| if mat.alpha_mode == AlphaMode.MASK: | |
| imgs['alpha'] += (mat.alpha_factor > mat.alpha_cutoff).float() * mat_mask | |
| elif mat.alpha_mode == AlphaMode.BLEND: | |
| imgs['alpha'] += mat.alpha_factor * mat_mask | |
| img = torch.cat([imgs[name] for name in imgs.keys()], dim=-1).unsqueeze(0) | |
| else: | |
| img = dr.interpolate(mesh.vertex_attrs.unsqueeze(0), rast, faces)[0] | |
| if antialias: img = dr.antialias(img, rast, vertices_clip, faces) | |
| out_dict[type] = img | |
| else: | |
| z_buffer = torch.full((1, resolution * ssaa, resolution * ssaa), torch.inf, device=self.device, dtype=torch.float32) | |
| for i in range(0, faces.shape[0], chunk_size): | |
| faces_chunk = faces[i:i+chunk_size] | |
| rast, rast_db = dr.rasterize( | |
| self.glctx, vertices_clip, faces_chunk, (resolution * ssaa, resolution * ssaa) | |
| ) | |
| z_filter = torch.logical_and( | |
| rast[..., 3] != 0, | |
| rast[..., 2] < z_buffer | |
| ) | |
| z_buffer[z_filter] = rast[z_filter][..., 2] | |
| for type in return_types: | |
| img = None | |
| if type == "mask" : | |
| img = (rast[..., -1:] > 0).float() | |
| elif type == "depth": | |
| img = dr.interpolate(vertices_camera[..., 2:3].contiguous(), rast, faces_chunk)[0] | |
| elif type == "normal" : | |
| face_normal_chunk = face_normal[i:i+chunk_size] | |
| img = dr.interpolate(face_normal_chunk.unsqueeze(0), rast, torch.arange(face_normal_chunk.shape[0], dtype=torch.int, device=self.device).unsqueeze(1).repeat(1, 3).contiguous())[0] | |
| img = (img + 1) / 2 | |
| elif type == "coord": | |
| img = dr.interpolate(vertices, rast, faces_chunk)[0] | |
| elif type == "attr": | |
| if isinstance(mesh, MeshWithVoxel): | |
| if 'grid_sample_3d' not in globals(): | |
| from flex_gemm.ops.grid_sample import grid_sample_3d | |
| mask = rast[..., -1:] > 0 | |
| xyz = dr.interpolate(vertices, rast, faces_chunk)[0] | |
| xyz = ((xyz - mesh.origin) / mesh.voxel_size).reshape(1, -1, 3) | |
| img = grid_sample_3d( | |
| mesh.attrs, | |
| torch.cat([torch.zeros_like(mesh.coords[..., :1]), mesh.coords], dim=-1), | |
| mesh.voxel_shape, | |
| xyz, | |
| mode='trilinear' | |
| ) | |
| img = img.reshape(1, resolution * ssaa, resolution * ssaa, mesh.attrs.shape[-1]) * mask | |
| elif isinstance(mesh, MeshWithPbrMaterial): | |
| tri_id = rast[0, :, :, -1:] | |
| mask = tri_id > 0 | |
| uv_coords = mesh.uv_coords.reshape(1, -1, 2) | |
| texc, texd = dr.interpolate( | |
| uv_coords, | |
| rast, | |
| torch.arange(mesh.uv_coords.shape[0] * 3, dtype=torch.int, device=self.device).reshape(-1, 3), | |
| rast_db=rast_db, | |
| diff_attrs='all' | |
| ) | |
| # Fix problematic texture coordinates | |
| texc = torch.nan_to_num(texc, nan=0.0, posinf=1e3, neginf=-1e3) | |
| texc = torch.clamp(texc, min=-1e3, max=1e3) | |
| texd = torch.nan_to_num(texd, nan=0.0, posinf=1e3, neginf=-1e3) | |
| texd = torch.clamp(texd, min=-1e3, max=1e3) | |
| mid = mesh.material_ids[(tri_id - 1).long()] | |
| imgs = { | |
| 'base_color': torch.zeros((resolution * ssaa, resolution * ssaa, 3), dtype=torch.float32, device=self.device), | |
| 'metallic': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device), | |
| 'roughness': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device), | |
| 'alpha': torch.zeros((resolution * ssaa, resolution * ssaa, 1), dtype=torch.float32, device=self.device) | |
| } | |
| for id, mat in enumerate(mesh.materials): | |
| mat_mask = (mid == id).float() * mask.float() | |
| mat_texc = texc * mat_mask | |
| mat_texd = texd * mat_mask | |
| if mat.base_color_texture is not None: | |
| base_color = dr.texture( | |
| mat.base_color_texture.image.unsqueeze(0), | |
| mat_texc, | |
| mat_texd, | |
| filter_mode='linear-mipmap-linear' if mat.base_color_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest', | |
| boundary_mode='clamp' if mat.base_color_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap' | |
| )[0] | |
| imgs['base_color'] += base_color * mat.base_color_factor * mat_mask | |
| else: | |
| imgs['base_color'] += mat.base_color_factor * mat_mask | |
| if mat.metallic_texture is not None: | |
| metallic = dr.texture( | |
| mat.metallic_texture.image.unsqueeze(0), | |
| mat_texc, | |
| mat_texd, | |
| filter_mode='linear-mipmap-linear' if mat.metallic_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest', | |
| boundary_mode='clamp' if mat.metallic_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap' | |
| )[0] | |
| imgs['metallic'] += metallic * mat.metallic_factor * mat_mask | |
| else: | |
| imgs['metallic'] += mat.metallic_factor * mat_mask | |
| if mat.roughness_texture is not None: | |
| roughness = dr.texture( | |
| mat.roughness_texture.image.unsqueeze(0), | |
| mat_texc, | |
| mat_texd, | |
| filter_mode='linear-mipmap-linear' if mat.roughness_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest', | |
| boundary_mode='clamp' if mat.roughness_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap' | |
| )[0] | |
| imgs['roughness'] += roughness * mat.roughness_factor * mat_mask | |
| else: | |
| imgs['roughness'] += mat.roughness_factor * mat_mask | |
| if mat.alpha_mode == AlphaMode.OPAQUE: | |
| imgs['alpha'] += 1.0 * mat_mask | |
| else: | |
| if mat.alpha_texture is not None: | |
| alpha = dr.texture( | |
| mat.alpha_texture.image.unsqueeze(0), | |
| mat_texc, | |
| mat_texd, | |
| filter_mode='linear-mipmap-linear' if mat.alpha_texture.filter_mode == TextureFilterMode.LINEAR else 'nearest', | |
| boundary_mode='clamp' if mat.alpha_texture.wrap_mode == TextureWrapMode.CLAMP_TO_EDGE else 'wrap' | |
| )[0] | |
| if mat.alpha_mode == AlphaMode.MASK: | |
| imgs['alpha'] += (alpha * mat.alpha_factor > mat.alpha_cutoff).float() * mat_mask | |
| elif mat.alpha_mode == AlphaMode.BLEND: | |
| imgs['alpha'] += alpha * mat.alpha_factor * mat_mask | |
| else: | |
| if mat.alpha_mode == AlphaMode.MASK: | |
| imgs['alpha'] += (mat.alpha_factor > mat.alpha_cutoff).float() * mat_mask | |
| elif mat.alpha_mode == AlphaMode.BLEND: | |
| imgs['alpha'] += mat.alpha_factor * mat_mask | |
| img = torch.cat([imgs[name] for name in imgs.keys()], dim=-1).unsqueeze(0) | |
| else: | |
| img = dr.interpolate(mesh.vertex_attrs.unsqueeze(0), rast, faces_chunk)[0] | |
| if type not in out_dict: | |
| out_dict[type] = img | |
| else: | |
| out_dict[type][z_filter] = img[z_filter] | |
| for type in return_types: | |
| img = out_dict[type] | |
| if ssaa > 1: | |
| img = F.interpolate(img.permute(0, 3, 1, 2), (resolution, resolution), mode='bilinear', align_corners=False, antialias=True) | |
| img = img.squeeze() | |
| else: | |
| img = img.permute(0, 3, 1, 2).squeeze() | |
| out_dict[type] = img | |
| if isinstance(mesh, (MeshWithVoxel, MeshWithPbrMaterial)) and 'attr' in return_types: | |
| for k, s in mesh.layout.items(): | |
| out_dict[k] = out_dict['attr'][s] | |
| del out_dict['attr'] | |
| return out_dict | |