Spaces:
Running
on
Zero
Running
on
Zero
add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import time
|
| 3 |
+
import cv2
|
| 4 |
+
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
from gradio.themes.ocean import Ocean
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoModelForCausalLM
|
| 13 |
+
import supervision as sv
|
| 14 |
+
|
| 15 |
+
model_id = "moondream/moondream3-preview"
|
| 16 |
+
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
model_id,
|
| 19 |
+
trust_remote_code=True,
|
| 20 |
+
torch_dtype=torch.bfloat16,
|
| 21 |
+
device_map={"": "cuda"},
|
| 22 |
+
)
|
| 23 |
+
model.compile()
|
| 24 |
+
|
| 25 |
+
def create_annotated_image(image, detection_result, object_name="Object"):
|
| 26 |
+
if not isinstance(detection_result, dict) or "objects" not in detection_result:
|
| 27 |
+
return image
|
| 28 |
+
|
| 29 |
+
original_width, original_height = image.size
|
| 30 |
+
annotated_image = np.array(image.convert("RGB"))
|
| 31 |
+
|
| 32 |
+
bboxes = []
|
| 33 |
+
labels = []
|
| 34 |
+
|
| 35 |
+
for i, obj in enumerate(detection_result["objects"]):
|
| 36 |
+
x_min = int(obj["x_min"] * original_width)
|
| 37 |
+
y_min = int(obj["y_min"] * original_height)
|
| 38 |
+
x_max = int(obj["x_max"] * original_width)
|
| 39 |
+
y_max = int(obj["y_max"] * original_height)
|
| 40 |
+
|
| 41 |
+
x_min = max(0, min(x_min, original_width))
|
| 42 |
+
y_min = max(0, min(y_min, original_height))
|
| 43 |
+
x_max = max(0, min(x_max, original_width))
|
| 44 |
+
y_max = max(0, min(y_max, original_height))
|
| 45 |
+
|
| 46 |
+
if x_max > x_min and y_max > y_min:
|
| 47 |
+
bboxes.append([x_min, y_min, x_max, y_max])
|
| 48 |
+
labels.append(f"{object_name} {i+1}")
|
| 49 |
+
print(f"Box {i+1}: ({x_min}, {y_min}, {x_max}, {y_max})")
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
detections = sv.Detections(
|
| 53 |
+
xyxy=np.array(bboxes, dtype=np.float32),
|
| 54 |
+
class_id=np.arange(len(bboxes))
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
bounding_box_annotator = sv.BoxAnnotator(
|
| 58 |
+
thickness=3,
|
| 59 |
+
color_lookup=sv.ColorLookup.INDEX
|
| 60 |
+
)
|
| 61 |
+
label_annotator = sv.LabelAnnotator(
|
| 62 |
+
text_thickness=2,
|
| 63 |
+
text_scale=0.6,
|
| 64 |
+
color_lookup=sv.ColorLookup.INDEX
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
annotated_image = bounding_box_annotator.annotate(
|
| 68 |
+
scene=annotated_image, detections=detections
|
| 69 |
+
)
|
| 70 |
+
annotated_image = label_annotator.annotate(
|
| 71 |
+
scene=annotated_image, detections=detections, labels=labels
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
return Image.fromarray(annotated_image)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def process_video_with_tracking(video_path, prompt, detection_interval=3):
|
| 81 |
+
|
| 82 |
+
cap = cv2.VideoCapture(video_path)
|
| 83 |
+
|
| 84 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 85 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 86 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 87 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 88 |
+
|
| 89 |
+
byte_tracker = sv.ByteTrack()
|
| 90 |
+
|
| 91 |
+
temp_dir = tempfile.mkdtemp()
|
| 92 |
+
output_path = os.path.join(temp_dir, "tracked_video.mp4")
|
| 93 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 94 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 95 |
+
|
| 96 |
+
frame_count = 0
|
| 97 |
+
detection_count = 0
|
| 98 |
+
last_detections = None
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
while True:
|
| 102 |
+
ret, frame = cap.read()
|
| 103 |
+
if not ret:
|
| 104 |
+
break
|
| 105 |
+
|
| 106 |
+
run_detection = (frame_count % detection_interval == 0)
|
| 107 |
+
|
| 108 |
+
if run_detection:
|
| 109 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 110 |
+
pil_image = Image.fromarray(frame_rgb)
|
| 111 |
+
|
| 112 |
+
result = model.detect(pil_image, prompt)
|
| 113 |
+
detection_count += 1
|
| 114 |
+
|
| 115 |
+
if "objects" in result and result["objects"]:
|
| 116 |
+
bboxes = []
|
| 117 |
+
confidences = []
|
| 118 |
+
|
| 119 |
+
for obj in result["objects"]:
|
| 120 |
+
x_min = max(0.0, min(1.0, obj["x_min"])) * width
|
| 121 |
+
y_min = max(0.0, min(1.0, obj["y_min"])) * height
|
| 122 |
+
x_max = max(0.0, min(1.0, obj["x_max"])) * width
|
| 123 |
+
y_max = max(0.0, min(1.0, obj["y_max"])) * height
|
| 124 |
+
|
| 125 |
+
if x_max > x_min and y_max > y_min:
|
| 126 |
+
bboxes.append([x_min, y_min, x_max, y_max])
|
| 127 |
+
confidences.append(0.8)
|
| 128 |
+
|
| 129 |
+
if bboxes:
|
| 130 |
+
detections = sv.Detections(
|
| 131 |
+
xyxy=np.array(bboxes, dtype=np.float32),
|
| 132 |
+
confidence=np.array(confidences, dtype=np.float32),
|
| 133 |
+
class_id=np.zeros(len(bboxes), dtype=int)
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
detections = byte_tracker.update_with_detections(detections)
|
| 137 |
+
last_detections = detections
|
| 138 |
+
else:
|
| 139 |
+
empty_detections = sv.Detections.empty()
|
| 140 |
+
detections = byte_tracker.update_with_detections(empty_detections)
|
| 141 |
+
last_detections = detections
|
| 142 |
+
else:
|
| 143 |
+
empty_detections = sv.Detections.empty()
|
| 144 |
+
detections = byte_tracker.update_with_detections(empty_detections)
|
| 145 |
+
last_detections = detections
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
else:
|
| 149 |
+
empty_detections = sv.Detections.empty()
|
| 150 |
+
detections = byte_tracker.update_with_detections(empty_detections)
|
| 151 |
+
if detections is not None and len(detections) > 0:
|
| 152 |
+
box_annotator = sv.BoxAnnotator(
|
| 153 |
+
thickness=3,
|
| 154 |
+
color_lookup=sv.ColorLookup.TRACK
|
| 155 |
+
)
|
| 156 |
+
label_annotator = sv.LabelAnnotator(
|
| 157 |
+
text_scale=0.6,
|
| 158 |
+
text_thickness=2,
|
| 159 |
+
color_lookup=sv.ColorLookup.TRACK
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
labels = []
|
| 163 |
+
for tracker_id in detections.tracker_id:
|
| 164 |
+
if tracker_id is not None:
|
| 165 |
+
labels.append(f"{prompt} ID: {tracker_id}")
|
| 166 |
+
else:
|
| 167 |
+
labels.append(f"{prompt} Unknown")
|
| 168 |
+
|
| 169 |
+
frame = box_annotator.annotate(scene=frame, detections=detections)
|
| 170 |
+
frame = label_annotator.annotate(scene=frame, detections=detections, labels=labels)
|
| 171 |
+
|
| 172 |
+
out.write(frame)
|
| 173 |
+
frame_count += 1
|
| 174 |
+
|
| 175 |
+
if frame_count % 30 == 0:
|
| 176 |
+
progress = (frame_count / total_frames) * 100
|
| 177 |
+
print(f"Processing: {progress:.1f}% ({frame_count}/{total_frames}) - Detections: {detection_count}")
|
| 178 |
+
|
| 179 |
+
finally:
|
| 180 |
+
cap.release()
|
| 181 |
+
out.release()
|
| 182 |
+
|
| 183 |
+
summary = f"""Video processing complete:
|
| 184 |
+
- Total frames processed: {frame_count}
|
| 185 |
+
- Detection runs: {detection_count} (every {detection_interval} frames)
|
| 186 |
+
- Objects tracked: {prompt}
|
| 187 |
+
- Processing speed: ~{detection_count/frame_count*100:.1f}% detection rate for optimization"""
|
| 188 |
+
|
| 189 |
+
return output_path, summary
|
| 190 |
+
|
| 191 |
+
def create_point_annotated_image(image, point_result):
|
| 192 |
+
"""Create annotated image with points for detected objects."""
|
| 193 |
+
if not isinstance(point_result, dict) or "points" not in point_result:
|
| 194 |
+
return image
|
| 195 |
+
|
| 196 |
+
original_width, original_height = image.size
|
| 197 |
+
annotated_image = np.array(image.convert("RGB"))
|
| 198 |
+
|
| 199 |
+
points = []
|
| 200 |
+
for point in point_result["points"]:
|
| 201 |
+
x = int(point["x"] * original_width)
|
| 202 |
+
y = int(point["y"] * original_height)
|
| 203 |
+
points.append([x, y])
|
| 204 |
+
|
| 205 |
+
if points:
|
| 206 |
+
points_array = np.array(points).reshape(1, -1, 2)
|
| 207 |
+
key_points = sv.KeyPoints(xy=points_array)
|
| 208 |
+
vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
|
| 209 |
+
annotated_image = vertex_annotator.annotate(
|
| 210 |
+
scene=annotated_image, key_points=key_points
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
return Image.fromarray(annotated_image)
|
| 214 |
+
|
| 215 |
+
def detect_objects(image, prompt, task_type, max_objects):
|
| 216 |
+
STANDARD_SIZE = (1024, 1024)
|
| 217 |
+
image.thumbnail(STANDARD_SIZE)
|
| 218 |
+
|
| 219 |
+
t0 = time.perf_counter()
|
| 220 |
+
|
| 221 |
+
if task_type == "Object Detection":
|
| 222 |
+
settings = {"max_objects": max_objects} if max_objects > 0 else {}
|
| 223 |
+
result = model.detect(image, prompt, settings=settings)
|
| 224 |
+
annotated_image = create_annotated_image(image, result, prompt)
|
| 225 |
+
|
| 226 |
+
elif task_type == "Point Detection":
|
| 227 |
+
result = model.point(image, prompt)
|
| 228 |
+
annotated_image = create_point_annotated_image(image, result)
|
| 229 |
+
|
| 230 |
+
elif task_type == "Caption":
|
| 231 |
+
result = model.caption(image, length="normal")
|
| 232 |
+
annotated_image = image
|
| 233 |
+
|
| 234 |
+
else:
|
| 235 |
+
result = model.query(image=image, question=prompt, reasoning=True)
|
| 236 |
+
annotated_image = image
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
elapsed_ms = (time.perf_counter() - t0) * 1_000
|
| 240 |
+
|
| 241 |
+
if isinstance(result, dict):
|
| 242 |
+
if "objects" in result:
|
| 243 |
+
output_text = f"Found {len(result['objects'])} objects:\n"
|
| 244 |
+
for i, obj in enumerate(result['objects'], 1):
|
| 245 |
+
output_text += f"\n{i}. Bounding box: "
|
| 246 |
+
output_text += f"({obj['x_min']:.3f}, {obj['y_min']:.3f}, {obj['x_max']:.3f}, {obj['y_max']:.3f})"
|
| 247 |
+
elif "points" in result:
|
| 248 |
+
output_text = f"Found {len(result['points'])} points:\n"
|
| 249 |
+
for i, point in enumerate(result['points'], 1):
|
| 250 |
+
output_text += f"\n{i}. Point: ({point['x']:.3f}, {point['y']:.3f})"
|
| 251 |
+
elif "caption" in result:
|
| 252 |
+
output_text = result['caption']
|
| 253 |
+
elif "answer" in result:
|
| 254 |
+
if "reasoning" in result:
|
| 255 |
+
output_text = f"Reasoning: {result['reasoning']}\n\nAnswer: {result['answer']}"
|
| 256 |
+
else:
|
| 257 |
+
output_text = result['answer']
|
| 258 |
+
else:
|
| 259 |
+
output_text = json.dumps(result, indent=2)
|
| 260 |
+
else:
|
| 261 |
+
output_text = str(result)
|
| 262 |
+
|
| 263 |
+
timing_text = f"Inference time: {elapsed_ms:.0f} ms"
|
| 264 |
+
|
| 265 |
+
return annotated_image, output_text, timing_text
|
| 266 |
+
|
| 267 |
+
def process_video(video_file, prompt, detection_interval):
|
| 268 |
+
if video_file is None:
|
| 269 |
+
return None, "Please upload a video file"
|
| 270 |
+
|
| 271 |
+
output_path, summary = process_video_with_tracking(
|
| 272 |
+
video_file, prompt, detection_interval
|
| 273 |
+
)
|
| 274 |
+
return output_path, summary
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 278 |
+
gr.Markdown("# Moondream3 🌝")
|
| 279 |
+
gr.Markdown("""
|
| 280 |
+
*Try [Moondream3 Preview](https://huggingface.co/moondream/moondream3-preview) for following tasks:*
|
| 281 |
+
|
| 282 |
+
- **Object Detection**
|
| 283 |
+
- **Point Detection**
|
| 284 |
+
- **Captioning**
|
| 285 |
+
- **Visual Question Answering**
|
| 286 |
+
- **Video Object Tracking**
|
| 287 |
+
""")
|
| 288 |
+
|
| 289 |
+
with gr.Tabs() as tabs:
|
| 290 |
+
with gr.Tab("Image Processing"):
|
| 291 |
+
with gr.Row():
|
| 292 |
+
with gr.Column(scale=2):
|
| 293 |
+
image_input = gr.Image(label="Upload an image", type="pil", height=400)
|
| 294 |
+
|
| 295 |
+
task_type = gr.Radio(
|
| 296 |
+
choices=["Object Detection", "Point Detection", "Caption", "Visual Question Answering"],
|
| 297 |
+
label="Task Type",
|
| 298 |
+
value="Object Detection"
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
prompt_input = gr.Textbox(
|
| 302 |
+
label="Prompt (object to detect/question to ask)",
|
| 303 |
+
placeholder="e.g., 'car', 'person', 'What's in this image?'",
|
| 304 |
+
value="objects"
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
max_objects = gr.Number(
|
| 308 |
+
label="Max Objects (for Object Detection only)",
|
| 309 |
+
value=10,
|
| 310 |
+
minimum=1,
|
| 311 |
+
maximum=50,
|
| 312 |
+
step=1,
|
| 313 |
+
visible=True
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
generate_btn = gr.Button(value="Generate", variant="primary")
|
| 317 |
+
|
| 318 |
+
with gr.Column(scale=2):
|
| 319 |
+
output_image = gr.Image(
|
| 320 |
+
type="pil",
|
| 321 |
+
label="Result",
|
| 322 |
+
height=400
|
| 323 |
+
)
|
| 324 |
+
output_textbox = gr.Textbox(
|
| 325 |
+
label="Model Response",
|
| 326 |
+
lines=10,
|
| 327 |
+
show_copy_button=True
|
| 328 |
+
)
|
| 329 |
+
output_time = gr.Markdown()
|
| 330 |
+
|
| 331 |
+
gr.Markdown("### Examples")
|
| 332 |
+
|
| 333 |
+
example_prompts = [
|
| 334 |
+
[
|
| 335 |
+
"https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG",
|
| 336 |
+
"Object Detection",
|
| 337 |
+
"candy",
|
| 338 |
+
5
|
| 339 |
+
],
|
| 340 |
+
[
|
| 341 |
+
"https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG",
|
| 342 |
+
"Point Detection",
|
| 343 |
+
"candy",
|
| 344 |
+
5
|
| 345 |
+
],
|
| 346 |
+
[
|
| 347 |
+
"https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg",
|
| 348 |
+
"Caption",
|
| 349 |
+
"",
|
| 350 |
+
5
|
| 351 |
+
],
|
| 352 |
+
[
|
| 353 |
+
"https://moondream.ai/images/blog/moondream-3-preview/benchmarks.jpg",
|
| 354 |
+
"Visual Question Answering",
|
| 355 |
+
"how well does moondream 3 perform in chartvqa?",
|
| 356 |
+
5
|
| 357 |
+
],
|
| 358 |
+
]
|
| 359 |
+
|
| 360 |
+
gr.Examples(
|
| 361 |
+
examples=example_prompts,
|
| 362 |
+
inputs=[image_input, task_type, prompt_input, max_objects],
|
| 363 |
+
label="Click an example to populate inputs"
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
with gr.Tab("Video Object Tracking"):
|
| 367 |
+
with gr.Row():
|
| 368 |
+
with gr.Column(scale=2):
|
| 369 |
+
video_input = gr.Video(
|
| 370 |
+
label="Upload a video file",
|
| 371 |
+
height=400
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
video_prompt = gr.Textbox(
|
| 375 |
+
label="Object to track",
|
| 376 |
+
placeholder="e.g., 'person', 'car', 'ball'",
|
| 377 |
+
value="person"
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
detection_interval = gr.Slider(
|
| 381 |
+
minimum=1,
|
| 382 |
+
maximum=30,
|
| 383 |
+
value=5,
|
| 384 |
+
step=5,
|
| 385 |
+
label="Detection Interval (frames)",
|
| 386 |
+
info="Run detection every N frames (1 = every frame, slower but more accurate)"
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
process_video_btn = gr.Button(value="Process Video", variant="primary")
|
| 390 |
+
|
| 391 |
+
with gr.Column(scale=2):
|
| 392 |
+
output_video = gr.Video(
|
| 393 |
+
label="Tracked Video Result",
|
| 394 |
+
height=400
|
| 395 |
+
)
|
| 396 |
+
video_summary = gr.Textbox(
|
| 397 |
+
label="Processing Summary",
|
| 398 |
+
lines=8,
|
| 399 |
+
show_copy_button=True
|
| 400 |
+
)
|
| 401 |
+
gr.Markdown("### Examples")
|
| 402 |
+
|
| 403 |
+
example_prompts = [
|
| 404 |
+
[
|
| 405 |
+
"https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/IMG_8137.mp4",
|
| 406 |
+
"snowboarder",
|
| 407 |
+
5
|
| 408 |
+
],
|
| 409 |
+
]
|
| 410 |
+
|
| 411 |
+
gr.Examples(
|
| 412 |
+
examples=example_prompts,
|
| 413 |
+
inputs=[video_input, video_prompt, detection_interval],
|
| 414 |
+
label="Click an example to populate inputs"
|
| 415 |
+
)
|
| 416 |
+
def update_max_objects_visibility(task):
|
| 417 |
+
return gr.Number(visible=(task == "Object Detection"))
|
| 418 |
+
|
| 419 |
+
task_type.change(
|
| 420 |
+
fn=update_max_objects_visibility,
|
| 421 |
+
inputs=[task_type],
|
| 422 |
+
outputs=[max_objects]
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
generate_btn.click(
|
| 427 |
+
fn=detect_objects,
|
| 428 |
+
inputs=[image_input, prompt_input, task_type, max_objects],
|
| 429 |
+
outputs=[output_image, output_textbox, output_time]
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
process_video_btn.click(
|
| 433 |
+
fn=process_video,
|
| 434 |
+
inputs=[video_input, video_prompt, detection_interval],
|
| 435 |
+
outputs=[output_video, video_summary]
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
if __name__ == "__main__":
|
| 439 |
+
demo.launch(share=True, debug=True)
|