Spaces:
Configuration error
Configuration error
fix for equal mass binning
Browse files- ece.py +67 -23
- resnet110_c10_logits.p +0 -0
- test_resnet-cifar_logits.py +164 -0
ece.py
CHANGED
|
@@ -41,23 +41,13 @@ More concretely, we provide a binned empirical estimator of top-1 calibration er
|
|
| 41 |
_KWARGS_DESCRIPTION = """
|
| 42 |
Calculates how good are predictions given some references, using certain scores
|
| 43 |
Args:
|
| 44 |
-
predictions:
|
| 45 |
-
|
| 46 |
-
references: list of reference for each prediction. Each
|
| 47 |
-
reference should be a string with tokens separated by spaces.
|
| 48 |
-
y_true : array-like
|
| 49 |
-
Ground truth labels.
|
| 50 |
-
p_hat : array-like
|
| 51 |
-
Array of confidence estimates.
|
| 52 |
n_bins : int, default=15
|
| 53 |
Number of bins of :math:`[\\frac{1}{n_{\\text{classes}},1]` for the confidence estimates.
|
| 54 |
-
n_classes : int default=None
|
| 55 |
-
Number of classes. Estimated from `y` and `y_pred` if not given.
|
| 56 |
p : int, default=1
|
| 57 |
Power of the calibration error, :math:`1 \\leq p \\leq \\infty`.
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
Returns
|
| 62 |
Expected calibration error (ECE), float.
|
| 63 |
|
|
@@ -97,24 +87,37 @@ def create_bins(n_bins=10, scheme="equal-range", bin_range=None, P=None):
|
|
| 97 |
|
| 98 |
# split sorted probabilities into groups of approx equal size
|
| 99 |
groups = np.array_split(np.sort(P), n_bins)
|
| 100 |
-
bin_upper_edges = list()
|
| 101 |
|
|
|
|
|
|
|
| 102 |
# rightmost entry per equal size group
|
| 103 |
-
for cur_group in range(n_bins
|
| 104 |
-
bin_upper_edges += [max(groups[cur_group])]
|
| 105 |
-
bin_upper_edges += [1
|
|
|
|
|
|
|
| 106 |
bins = np.array(bin_upper_edges)
|
| 107 |
-
# OverflowError: cannot convert float infinity to integer
|
| 108 |
|
| 109 |
return bins
|
| 110 |
|
| 111 |
|
| 112 |
def discretize_into_bins(P, bins):
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# Fix to scipy.binned_dd_statistic:
|
| 116 |
# Tie-breaking to the left for rightmost bin
|
| 117 |
# Using `digitize`, values that fall on an edge are put in the right bin.
|
|
|
|
| 118 |
# For the rightmost bin, we want values equal to the right
|
| 119 |
# edge to be counted in the last bin, and not as an outlier.
|
| 120 |
|
|
@@ -130,6 +133,7 @@ def discretize_into_bins(P, bins):
|
|
| 130 |
on_edge = np.where(
|
| 131 |
(P[:, k] >= bins[-1]) & (np.around(P[:, k], decimal) == np.around(bins[-1], decimal))
|
| 132 |
)[0]
|
|
|
|
| 133 |
# Shift these points one bin to the left.
|
| 134 |
oneDbins[on_edge, k] -= 1
|
| 135 |
|
|
@@ -138,16 +142,19 @@ def discretize_into_bins(P, bins):
|
|
| 138 |
|
| 139 |
def manual_binned_statistic(P, y_correct, bins, statistic="mean"):
|
| 140 |
bin_assignments = discretize_into_bins(np.expand_dims(P, 0), bins)[0]
|
|
|
|
|
|
|
| 141 |
result = np.empty([len(bins)], float)
|
| 142 |
result.fill(np.nan) # cannot assume each bin will have observations
|
| 143 |
|
| 144 |
flatcount = np.bincount(bin_assignments, None)
|
|
|
|
| 145 |
a = flatcount.nonzero()
|
| 146 |
|
| 147 |
if statistic == "mean":
|
| 148 |
flatsum = np.bincount(bin_assignments, y_correct)
|
| 149 |
result[a] = flatsum[a] / flatcount[a]
|
| 150 |
-
return result, bins, bin_assignments + 1 #
|
| 151 |
|
| 152 |
|
| 153 |
def bin_calibrated_accuracy(bins, proxy="upper-edge"):
|
|
@@ -168,16 +175,19 @@ def CE_estimate(y_correct, P, bins=None, p=1, proxy="upper-edge", detail=False):
|
|
| 168 |
Summary: weighted average over the accuracy/confidence difference of discrete bins of prediction probability
|
| 169 |
"""
|
| 170 |
|
| 171 |
-
n_bins = len(bins) - 1
|
| 172 |
bin_range = [min(bins), max(bins)]
|
| 173 |
|
| 174 |
# average bin probability #55 for bin 50-60, mean per bin; or right/upper bin edges
|
| 175 |
-
calibrated_acc = bin_calibrated_accuracy(bins, proxy=
|
| 176 |
|
| 177 |
empirical_acc, bin_edges, bin_assignment = manual_binned_statistic(P, y_correct, bins)
|
| 178 |
bin_numbers, weights_ece = np.unique(bin_assignment, return_counts=True)
|
| 179 |
anindices = bin_numbers - 1 # reduce bin counts; left edge; indexes right by default
|
| 180 |
|
|
|
|
|
|
|
|
|
|
| 181 |
# Expected calibration error
|
| 182 |
if p < np.inf: # L^p-CE
|
| 183 |
CE = np.average(
|
|
@@ -292,7 +302,7 @@ class ECE(evaluate.EvaluationModule):
|
|
| 292 |
}
|
| 293 |
|
| 294 |
|
| 295 |
-
def test_ECE():
|
| 296 |
N = 10 # N evaluation instances {(x_i,y_i)}_{i=1}^N
|
| 297 |
K = 5 # K class problem
|
| 298 |
|
|
@@ -308,7 +318,7 @@ def test_ECE():
|
|
| 308 |
references, predictions = list(zip(*[random_mc_instance() for i in range(N)]))
|
| 309 |
references = np.array(references, dtype=np.int64)
|
| 310 |
predictions = np.array(predictions, dtype=np.float32)
|
| 311 |
-
res = ECE()._compute(predictions, references)
|
| 312 |
print(f"ECE: {res['ECE']}")
|
| 313 |
|
| 314 |
res = ECE()._compute(predictions, references, detail=True)
|
|
@@ -324,6 +334,40 @@ def test_deterministic():
|
|
| 324 |
print(f"ECE: {res['ECE']}\n {res}")
|
| 325 |
|
| 326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
if __name__ == "__main__":
|
|
|
|
| 328 |
test_deterministic()
|
| 329 |
test_ECE()
|
|
|
|
| 41 |
_KWARGS_DESCRIPTION = """
|
| 42 |
Calculates how good are predictions given some references, using certain scores
|
| 43 |
Args:
|
| 44 |
+
predictions: 2D Array of confidence estimates.
|
| 45 |
+
references: 1D Array of Ground truth indices.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
n_bins : int, default=15
|
| 47 |
Number of bins of :math:`[\\frac{1}{n_{\\text{classes}},1]` for the confidence estimates.
|
|
|
|
|
|
|
| 48 |
p : int, default=1
|
| 49 |
Power of the calibration error, :math:`1 \\leq p \\leq \\infty`.
|
| 50 |
|
|
|
|
|
|
|
| 51 |
Returns
|
| 52 |
Expected calibration error (ECE), float.
|
| 53 |
|
|
|
|
| 87 |
|
| 88 |
# split sorted probabilities into groups of approx equal size
|
| 89 |
groups = np.array_split(np.sort(P), n_bins)
|
|
|
|
| 90 |
|
| 91 |
+
# is this really required?
|
| 92 |
+
bin_upper_edges = []
|
| 93 |
# rightmost entry per equal size group
|
| 94 |
+
for cur_group in range(n_bins):
|
| 95 |
+
bin_upper_edges += [max(groups[cur_group])] # if upper edges is what we compare against
|
| 96 |
+
bin_upper_edges += [1] # always +1 for right edges
|
| 97 |
+
bin_upper_edges = sorted(list(set(bin_upper_edges))) # important for numerical conditions!
|
| 98 |
+
# might change number of bins :O
|
| 99 |
bins = np.array(bin_upper_edges)
|
|
|
|
| 100 |
|
| 101 |
return bins
|
| 102 |
|
| 103 |
|
| 104 |
def discretize_into_bins(P, bins):
|
| 105 |
+
|
| 106 |
+
contains_rightmost = bool(bins[-1] > 1) #outlier bins
|
| 107 |
+
contains_leftmost = bool(bins[0] == 0) #beyond [before] bin_range[0]
|
| 108 |
+
# bins_with_left_edge = np.insert(bins, 0, 0, axis=0)
|
| 109 |
+
|
| 110 |
+
oneDbins = np.digitize(
|
| 111 |
+
P, bins, right=contains_rightmost
|
| 112 |
+
) # since bins contains extra righmost (& leftmost bins)
|
| 113 |
+
if contains_leftmost:
|
| 114 |
+
oneDbins -= 1
|
| 115 |
+
# oneDbins = np.digitize(P, bins) - 1 # since bins contains extra righmost (& leftmost bins)
|
| 116 |
|
| 117 |
# Fix to scipy.binned_dd_statistic:
|
| 118 |
# Tie-breaking to the left for rightmost bin
|
| 119 |
# Using `digitize`, values that fall on an edge are put in the right bin.
|
| 120 |
+
|
| 121 |
# For the rightmost bin, we want values equal to the right
|
| 122 |
# edge to be counted in the last bin, and not as an outlier.
|
| 123 |
|
|
|
|
| 133 |
on_edge = np.where(
|
| 134 |
(P[:, k] >= bins[-1]) & (np.around(P[:, k], decimal) == np.around(bins[-1], decimal))
|
| 135 |
)[0]
|
| 136 |
+
|
| 137 |
# Shift these points one bin to the left.
|
| 138 |
oneDbins[on_edge, k] -= 1
|
| 139 |
|
|
|
|
| 142 |
|
| 143 |
def manual_binned_statistic(P, y_correct, bins, statistic="mean"):
|
| 144 |
bin_assignments = discretize_into_bins(np.expand_dims(P, 0), bins)[0]
|
| 145 |
+
|
| 146 |
+
# indexed as in julia!
|
| 147 |
result = np.empty([len(bins)], float)
|
| 148 |
result.fill(np.nan) # cannot assume each bin will have observations
|
| 149 |
|
| 150 |
flatcount = np.bincount(bin_assignments, None)
|
| 151 |
+
# cannot have a negative index
|
| 152 |
a = flatcount.nonzero()
|
| 153 |
|
| 154 |
if statistic == "mean":
|
| 155 |
flatsum = np.bincount(bin_assignments, y_correct)
|
| 156 |
result[a] = flatsum[a] / flatcount[a]
|
| 157 |
+
return result, bins, bin_assignments + 1 # upper right edge as proxy
|
| 158 |
|
| 159 |
|
| 160 |
def bin_calibrated_accuracy(bins, proxy="upper-edge"):
|
|
|
|
| 175 |
Summary: weighted average over the accuracy/confidence difference of discrete bins of prediction probability
|
| 176 |
"""
|
| 177 |
|
| 178 |
+
n_bins = len(bins) - 1 #true number of bins
|
| 179 |
bin_range = [min(bins), max(bins)]
|
| 180 |
|
| 181 |
# average bin probability #55 for bin 50-60, mean per bin; or right/upper bin edges
|
| 182 |
+
calibrated_acc = bin_calibrated_accuracy(bins, proxy=proxy)
|
| 183 |
|
| 184 |
empirical_acc, bin_edges, bin_assignment = manual_binned_statistic(P, y_correct, bins)
|
| 185 |
bin_numbers, weights_ece = np.unique(bin_assignment, return_counts=True)
|
| 186 |
anindices = bin_numbers - 1 # reduce bin counts; left edge; indexes right by default
|
| 187 |
|
| 188 |
+
import pdb; pdb.set_trace() # breakpoint 83c9148b //
|
| 189 |
+
|
| 190 |
+
|
| 191 |
# Expected calibration error
|
| 192 |
if p < np.inf: # L^p-CE
|
| 193 |
CE = np.average(
|
|
|
|
| 302 |
}
|
| 303 |
|
| 304 |
|
| 305 |
+
def test_ECE(**kwargs):
|
| 306 |
N = 10 # N evaluation instances {(x_i,y_i)}_{i=1}^N
|
| 307 |
K = 5 # K class problem
|
| 308 |
|
|
|
|
| 318 |
references, predictions = list(zip(*[random_mc_instance() for i in range(N)]))
|
| 319 |
references = np.array(references, dtype=np.int64)
|
| 320 |
predictions = np.array(predictions, dtype=np.float32)
|
| 321 |
+
res = ECE()._compute(predictions, references, **kwargs)
|
| 322 |
print(f"ECE: {res['ECE']}")
|
| 323 |
|
| 324 |
res = ECE()._compute(predictions, references, detail=True)
|
|
|
|
| 334 |
print(f"ECE: {res['ECE']}\n {res}")
|
| 335 |
|
| 336 |
|
| 337 |
+
def test_equalmass_binning():
|
| 338 |
+
probs = np.array([0.63, 0.2, 0.2, 0, 0.95, 0.05, 0.72, 0.1, 0.2])
|
| 339 |
+
|
| 340 |
+
kwargs = dict(
|
| 341 |
+
n_bins=5,
|
| 342 |
+
scheme="equal-mass",
|
| 343 |
+
bin_range=None,
|
| 344 |
+
proxy="upper-edge",
|
| 345 |
+
# proxy="center",
|
| 346 |
+
p=1,
|
| 347 |
+
detail=True,
|
| 348 |
+
)
|
| 349 |
+
bins = create_bins(
|
| 350 |
+
n_bins=kwargs["n_bins"], scheme=kwargs["scheme"], bin_range=kwargs["bin_range"], P=probs
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
test_ECE(**kwargs)
|
| 354 |
+
|
| 355 |
+
"""
|
| 356 |
+
res = ECE()._compute(
|
| 357 |
+
references=[0, 1, 2],
|
| 358 |
+
predictions=[[0.63, 0.2, 0.2], [0, 0.95, 0.05], [0.72, 0.1, 0.2]],
|
| 359 |
+
detail=True,
|
| 360 |
+
)
|
| 361 |
+
print(f"ECE: {res['ECE']}\n {res}")
|
| 362 |
+
"""
|
| 363 |
+
# need to provide lens
|
| 364 |
+
|
| 365 |
+
import pdb
|
| 366 |
+
|
| 367 |
+
pdb.set_trace() # breakpoint 94583f9f //
|
| 368 |
+
|
| 369 |
+
|
| 370 |
if __name__ == "__main__":
|
| 371 |
+
test_equalmass_binning()
|
| 372 |
test_deterministic()
|
| 373 |
test_ECE()
|
resnet110_c10_logits.p
ADDED
|
Binary file (685 kB). View file
|
|
|
test_resnet-cifar_logits.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This testing script loads actual probabilisitic predictions from a resnet finetuned on CIFAR
|
| 3 |
+
|
| 4 |
+
There are a number of logits-groundtruth pickles available @ https://github.com/markus93/NN_calibration/tree/master/logits
|
| 5 |
+
[Seems to have moved from Git-LFS to sharepoint]
|
| 6 |
+
https://tartuulikool-my.sharepoint.com/:f:/g/personal/markus93_ut_ee/EmW0xbhcic5Ou0lRbTrySOUBF2ccSsN7lo6lvSfuG1djew?e=l0TErb
|
| 7 |
+
|
| 8 |
+
See https://github.com/markus93/NN_calibration/blob/master/logits/Readme.txt to decode the [model_dataset] filenames
|
| 9 |
+
|
| 10 |
+
As a bonus, one could consider temperature scaling and measuring after calibration.
|
| 11 |
+
"""
|
| 12 |
+
import sys
|
| 13 |
+
import numpy as np
|
| 14 |
+
import scipy.stats as stats
|
| 15 |
+
from scipy.special import softmax
|
| 16 |
+
import pickle
|
| 17 |
+
from sklearn.model_selection import train_test_split
|
| 18 |
+
|
| 19 |
+
from matplotlib import pyplot as plt
|
| 20 |
+
|
| 21 |
+
from ece import create_bins, discretize_into_bins, ECE
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Open file with pickled variables
|
| 25 |
+
def unpickle_probs(file, verbose=0, normalize=True):
|
| 26 |
+
with open(file, "rb") as f: # Python 3: open(..., 'rb')
|
| 27 |
+
y1, y2 = pickle.load(f) # unpickle the content
|
| 28 |
+
|
| 29 |
+
if isinstance(y1, tuple):
|
| 30 |
+
y_probs_val, y_val = y1
|
| 31 |
+
y_probs_test, y_test = y2
|
| 32 |
+
else:
|
| 33 |
+
y_probs_val, y_probs_test, y_val, y_test = train_test_split(
|
| 34 |
+
y1, y2.reshape(-1, 1), test_size=len(y2) - 5000, random_state=15
|
| 35 |
+
) # Splits the data in the case of pretrained models
|
| 36 |
+
|
| 37 |
+
if normalize:
|
| 38 |
+
y_probs_val = softmax(y_probs_val, -1)
|
| 39 |
+
y_probs_test = softmax(y_probs_test, -1)
|
| 40 |
+
|
| 41 |
+
if verbose:
|
| 42 |
+
print(
|
| 43 |
+
"y_probs_val:", y_probs_val.shape
|
| 44 |
+
) # (5000, 10); Validation set probabilities of predictions
|
| 45 |
+
print("y_true_val:", y_val.shape) # (5000, 1); Validation set true labels
|
| 46 |
+
print("y_probs_test:", y_probs_test.shape) # (10000, 10); Test set probabilities
|
| 47 |
+
print("y_true_test:", y_test.shape) # (10000, 1); Test set true labels
|
| 48 |
+
|
| 49 |
+
return ((y_probs_val, y_val.ravel()), (y_probs_test, y_test.ravel()))
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def unpickle_structured_probs(valpath=None, testpath=None):
|
| 53 |
+
valpath = "/home/jordy/code/gordon/arkham/arkham/StructuredCalibration/models/jordyvl/bert-base-cased_conll2003-sm-first-ner_validation_UTY.pickle"
|
| 54 |
+
testpath = "/home/jordy/code/gordon/arkham/arkham/StructuredCalibration/models/jordyvl/bert-base-cased_conll2003-sm-first-ner_test_UTY.pickle"
|
| 55 |
+
|
| 56 |
+
with open(valpath, "rb") as f:
|
| 57 |
+
X_val, _, y_val, _ = pickle.load(f)
|
| 58 |
+
|
| 59 |
+
with open(testpath, "rb") as f:
|
| 60 |
+
X_test, _, y_test, _ = pickle.load(f)
|
| 61 |
+
|
| 62 |
+
X_val = np.log(X_val) # originally exponentiated [different purposes]
|
| 63 |
+
X_test = np.log(X_test) # originally exponentiated [different purposes]
|
| 64 |
+
# structured logits
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
"""
|
| 68 |
+
ALTERNATE equal mass binning
|
| 69 |
+
"""
|
| 70 |
+
# Define data types.
|
| 71 |
+
from typing import List, Tuple, NewType, TypeVar
|
| 72 |
+
Data = List[Tuple[float, float]] # List of (predicted_probability, true_label).
|
| 73 |
+
Bins = List[float] # List of bin boundaries, excluding 0.0, but including 1.0.
|
| 74 |
+
BinnedData = List[Data] # binned_data[i] contains the data in bin i.
|
| 75 |
+
T = TypeVar('T')
|
| 76 |
+
|
| 77 |
+
eps = 1e-6
|
| 78 |
+
|
| 79 |
+
def split(sequence: List[T], parts: int) -> List[List[T]]:
|
| 80 |
+
assert parts <= len(sequence), "more bins than probabilities"
|
| 81 |
+
part_size = int(np.ceil(len(sequence) * 1.0 / parts))
|
| 82 |
+
assert part_size * parts >= len(sequence), "no missing instances when partitioning"
|
| 83 |
+
assert (part_size - 1) * parts < len(sequence), "dropping 1 does not make for missing"
|
| 84 |
+
return [sequence[i:i + part_size] for i in range(0, len(sequence), part_size)]
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_equal_bins(probs: List[float], n_bins: int=10) -> Bins:
|
| 88 |
+
"""Get bins that contain approximately an equal number of data points."""
|
| 89 |
+
sorted_probs = sorted(probs)
|
| 90 |
+
binned_data = split(sorted_probs, n_bins)
|
| 91 |
+
bins: Bins = []
|
| 92 |
+
for i in range(len(binned_data) - 1):
|
| 93 |
+
last_prob = binned_data[i][-1]
|
| 94 |
+
next_first_prob = binned_data[i + 1][0]
|
| 95 |
+
bins.append((last_prob + next_first_prob) / 2.0)
|
| 96 |
+
bins.append(1.0)
|
| 97 |
+
bins = sorted(list(set(bins))) #this is the special thing!
|
| 98 |
+
return bins
|
| 99 |
+
|
| 100 |
+
def histedges_equalN(x, nbin):
|
| 101 |
+
npt = len(x)
|
| 102 |
+
return np.interp(np.linspace(0, npt, nbin + 1),
|
| 103 |
+
np.arange(npt),
|
| 104 |
+
np.sort(x))
|
| 105 |
+
|
| 106 |
+
'''
|
| 107 |
+
bin_upper_edges = histedges_equalN(P, n_bins)
|
| 108 |
+
#n, bins, patches = plt.hist(x, histedges_equalN(x, 10))
|
| 109 |
+
'''
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def test_equalmass_binning(P, Y):
|
| 113 |
+
#probs = np.array([0.63, 0.2, 0.2, 0, 0.95, 0.05, 0.72, 0.1, 0.2])
|
| 114 |
+
|
| 115 |
+
kwargs = dict(
|
| 116 |
+
n_bins= 10,
|
| 117 |
+
scheme="equal-mass",
|
| 118 |
+
bin_range=None,
|
| 119 |
+
proxy="upper-edge",
|
| 120 |
+
#proxy="center",
|
| 121 |
+
p=1,
|
| 122 |
+
detail=True,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
if P.ndim == 2: #can assume ECE
|
| 126 |
+
p_max = np.max(P, -1) # create p̂ as top-1 softmax probability € [0,1]
|
| 127 |
+
|
| 128 |
+
eqr_bins = create_bins(n_bins=kwargs["n_bins"], scheme="equal-range", bin_range=kwargs["bin_range"], P=p_max)
|
| 129 |
+
eqm_bins = create_bins(n_bins=kwargs["n_bins"], scheme=kwargs["scheme"], bin_range=kwargs["bin_range"], P=p_max)
|
| 130 |
+
#alternate_eqm_bins = get_equal_bins(p_max, kwargs["n_bins"])
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
eqr_hist = np.digitize(p_max, eqr_bins, right=True)
|
| 134 |
+
eqm_hist = np.digitize(p_max, eqm_bins, right=True)
|
| 135 |
+
eqml_hist = np.digitize(p_max, eqm_bins, right=False)
|
| 136 |
+
|
| 137 |
+
#eqm_bins = [0] + eqm_bins
|
| 138 |
+
|
| 139 |
+
other_hist = discretize_into_bins(np.expand_dims(p_max, 0), eqm_bins)
|
| 140 |
+
hist_difference = stats.power_divergence(eqr_hist, eqm_hist, lambda_="pearson") #chisquare
|
| 141 |
+
|
| 142 |
+
#plt.hist(eqr_hist, color="green", label="equal-range")
|
| 143 |
+
plt.hist(eqm_hist, color="blue", label="equal-mass")
|
| 144 |
+
plt.legend()
|
| 145 |
+
#plt.show()
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
res = ECE()._compute(P, Y, **kwargs)
|
| 149 |
+
print(f"eqm ECE: {res['ECE']}")
|
| 150 |
+
|
| 151 |
+
kwargs["scheme"] = "equal-range"
|
| 152 |
+
res = ECE()._compute(P, Y, **kwargs)
|
| 153 |
+
print(f"eqr ECE: {res['ECE']}")
|
| 154 |
+
|
| 155 |
+
# res = ECE()._compute(predictions, references, detail=True)
|
| 156 |
+
# print(f"ECE: {res['ECE']}")
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
if __name__ == "__main__":
|
| 161 |
+
FILE_PATH = sys.argv[1] if len(sys.argv) > 1 else "resnet110_c10_logits.p"
|
| 162 |
+
(p_val, y_val), (p_test, y_test) = unpickle_probs(FILE_PATH, False, True)
|
| 163 |
+
test_equalmass_binning(p_val, y_val)
|
| 164 |
+
# do on val
|