File size: 22,921 Bytes
0646b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import threading
from datetime import date
from typing import Dict, Any, Optional
import hashlib
import json
import os
from langchain_openai import ChatOpenAI, AzureChatOpenAI
from langchain_ibm import ChatWatsonx
from langchain_core.language_models.chat_models import BaseChatModel
from loguru import logger

try:
    from langchain_groq import ChatGroq
except ImportError:
    logger.warning("Langchain Groq not installed, using OpenAI instead")
    ChatGroq = None

try:
    from langchain_google_genai import ChatGoogleGenerativeAI
except ImportError:
    logger.warning("Langchain Google GenAI not installed, using OpenAI instead")
    ChatGoogleGenerativeAI = None


class LLMManager:
    """Singleton class to manage LLM instances based on agent name and settings"""

    _instance = None
    _lock = threading.Lock()

    def __new__(cls):
        if cls._instance is None:
            with cls._lock:
                if cls._instance is None:
                    cls._instance = super().__new__(cls)
                    cls._instance._initialized = False
        return cls._instance

    def __init__(self):
        if not self._initialized:
            self._models: Dict[str, Any] = {}
            self._pre_instantiated_model: Optional[BaseChatModel] = None
            self._initialized = True

    def convert_dates_to_strings(self, obj):
        if isinstance(obj, dict):
            return {k: self.convert_dates_to_strings(v) for k, v in obj.items()}
        elif isinstance(obj, list):
            return [self.convert_dates_to_strings(item) for item in obj]
        elif isinstance(obj, date):
            return obj.isoformat()
        else:
            return obj

    def set_llm(self, model: BaseChatModel) -> None:
        """Set a pre-instantiated model to use for all tasks

        Args:
            model: Pre-instantiated ChatOpenAI or BaseChatModel instance
        """
        if not isinstance(model, BaseChatModel):
            raise ValueError("Model must be an instance of BaseChatModel or its subclass")

        self._pre_instantiated_model = model
        logger.info(f"Pre-instantiated model set: {type(model).__name__}")

    def _update_model_parameters(
        self,
        model: BaseChatModel,
        temperature: float = 0.1,
        max_tokens: int = 1000,
        max_completion_tokens: Optional[int] = None,
    ) -> BaseChatModel:
        """Update model parameters (temperature, max_tokens, and max_completion_tokens) for the task

        Args:
            model: The model to update
            temperature: Temperature setting (default: 0.1)
            max_tokens: Maximum tokens for the task
            max_completion_tokens: Maximum completion tokens for the task (defaults to max_tokens if not provided)

        Returns:
            Updated model with new parameters
        """
        model_kwargs = {}
        if hasattr(model, 'model_kwargs') and model.model_kwargs is not None:
            model_kwargs = model.model_kwargs.copy()

        # Check if this is a reasoning model
        model_name = getattr(model, 'model_name', '') or getattr(model, 'model', '')
        is_reasoning = self._is_reasoning_model(model_name)

        # Update temperature only for non-reasoning models
        if not is_reasoning:
            if hasattr(model, 'temperature'):
                logger.debug(f"Updating model temperature: {temperature}")
                if hasattr(model, 'model_kwargs') and model.model_kwargs is not None:
                    logger.debug(f"Model keys: {model.model_kwargs.keys()}")
                logger.debug(f"Model instance: {type(model)}")
                model.temperature = temperature
            elif 'temperature' in model_kwargs:
                model_kwargs['temperature'] = temperature
        else:
            logger.debug(f"Skipping temperature update for reasoning model: {model_name}")

        # Set max_completion_tokens (defaults to max_tokens if not provided)
        completion_tokens = max_completion_tokens if max_completion_tokens is not None else max_tokens

        # Update max_tokens
        if hasattr(model, 'max_tokens'):
            model.max_tokens = max_tokens
        elif 'max_tokens' in model_kwargs:
            model_kwargs['max_tokens'] = max_tokens

        # Update max_completion_tokens
        if hasattr(model, 'max_completion_tokens'):
            model.max_completion_tokens = completion_tokens
        elif 'max_completion_tokens' in model_kwargs:
            model_kwargs['max_completion_tokens'] = completion_tokens

        # Update model_kwargs if it exists
        if hasattr(model, 'model_kwargs') and model.model_kwargs is not None:
            model.model_kwargs = model_kwargs

        logger.debug(
            f"Updated model parameters: temperature={temperature}, max_tokens={max_tokens}, max_completion_tokens={completion_tokens}"
        )
        return model

    def clear_pre_instantiated_model(self) -> None:
        """Clear the pre-instantiated model and return to normal model creation"""
        self._pre_instantiated_model = None
        logger.info("Pre-instantiated model cleared, returning to normal model creation")

    def _create_cache_key(self, model_settings: Dict[str, Any]) -> str:
        """Create a unique cache key from model settings including resolved values"""
        # Sort settings to ensure consistent hashing
        d = self.convert_dates_to_strings(model_settings.to_dict())
        keys_to_delete = [key for key in d if "prompt" in key]

        for key in keys_to_delete:
            del d[key]

        # Add resolved values to ensure cache key reflects actual configuration
        platform = model_settings.get('platform')
        if platform:
            d['resolved_model_name'] = self._get_model_name(model_settings, platform)
            d['resolved_api_version'] = self._get_api_version(model_settings, platform)
            d['resolved_base_url'] = self._get_base_url(model_settings, platform)

        settings_str = json.dumps(d, sort_keys=True)
        return hashlib.md5(settings_str.encode()).hexdigest()

    def _get_model_name(self, model_settings: Dict[str, Any], platform: str) -> str:
        """Get model name with environment variable override support"""
        # Check if model_name is defined in TOML settings
        toml_model_name = model_settings.get('model_name')

        if platform == "openai":
            # For OpenAI, check environment variables
            env_model_name = os.environ.get('MODEL_NAME')
            if env_model_name:
                logger.info(f"Using MODEL_NAME from environment: {env_model_name}")
                return env_model_name
            elif toml_model_name:
                logger.debug(f"Using model_name from TOML: {toml_model_name}")
                return toml_model_name
            else:
                # Default fallback
                default_model = "gpt-4o"
                logger.info(f"No model_name specified, using default: {default_model}")
                return default_model
        elif platform == "groq":
            # For Groq, check environment variables
            env_model_name = os.environ.get('MODEL_NAME')
            if env_model_name:
                logger.info(f"Using MODEL_NAME from environment for Groq: {env_model_name}")
                return env_model_name
            elif toml_model_name:
                logger.debug(f"Using model_name from TOML: {toml_model_name}")
                return toml_model_name
            else:
                # Default fallback
                default_model = "openai/gpt-oss-20b"
                logger.info(f"No model_name specified, using default: {default_model}")
                return default_model
        elif platform == "watsonx":
            # For WatsonX, check environment variables
            env_model_name = os.environ.get('MODEL_NAME')
            if env_model_name:
                logger.info(f"Using MODEL_NAME from environment for WatsonX: {env_model_name}")
                return env_model_name
            elif toml_model_name:
                logger.debug(f"Using model_name from TOML: {toml_model_name}")
                return toml_model_name
            else:
                # Default fallback for WatsonX
                default_model = "meta-llama/llama-4-maverick-17b-128e-instruct-fp8"
                logger.info(f"No model_name specified for WatsonX, using default: {default_model}")
                return default_model
        elif platform == "azure":
            # For Azure, check environment variables
            env_model_name = os.environ.get('MODEL_NAME')
            if env_model_name:
                logger.info(f"Using MODEL_NAME from environment for Azure: {env_model_name}")
                return env_model_name
            elif toml_model_name:
                logger.debug(f"Using model_name from TOML: {toml_model_name}")
                return toml_model_name
            else:
                # Default fallback for Azure
                default_model = "gpt-4o"
                logger.info(f"No model_name specified for Azure, using default: {default_model}")
                return default_model
        elif platform == "google-genai":
            # For Google GenAI, check environment variables
            env_model_name = os.environ.get('MODEL_NAME')
            if env_model_name:
                logger.info(f"Using MODEL_NAME from environment for Google GenAI: {env_model_name}")
                return env_model_name
            elif toml_model_name:
                logger.debug(f"Using model_name from TOML: {toml_model_name}")
                return toml_model_name
            else:
                # Default fallback for Google GenAI
                default_model = "gemini-1.5-pro"
                logger.info(f"No model_name specified for Google GenAI, using default: {default_model}")
                return default_model
        elif platform == "openrouter":
            env_model_name = os.environ.get('MODEL_NAME')
            if env_model_name:
                logger.info(f"Using MODEL_NAME from environment for OpenRouter: {env_model_name}")
                return env_model_name
            elif toml_model_name:
                logger.debug(f"Using model_name from TOML: {toml_model_name}")
                return toml_model_name
            else:
                default_model = "anthropic/claude-3.5-sonnet"
                logger.info(f"No model_name specified for OpenRouter, using default: {default_model}")
                return default_model
        else:
            # For other platforms, use TOML or default
            if toml_model_name:
                return toml_model_name
            else:
                raise ValueError(f"model_name must be specified for platform: {platform}")

    def _get_api_version(self, model_settings: Dict[str, Any], platform: str) -> str:
        """Get API version with environment variable override support"""
        if platform == "openai":
            # Check environment variable first
            env_api_version = os.environ.get('OPENAI_API_VERSION')
            if env_api_version:
                logger.info(f"Using OPENAI_API_VERSION from environment: {env_api_version}")
                return env_api_version

            # Check TOML settings
            toml_api_version = model_settings.get('api_version')
            if toml_api_version:
                # Validate if it's a date type and transform to string
                if isinstance(toml_api_version, date):
                    toml_api_version = toml_api_version.isoformat()
                    logger.debug(f"Converted date to string: {toml_api_version}")
                logger.debug(f"Using api_version from TOML: {toml_api_version}")
                return toml_api_version

            # Default fallback
            default_openrouter = "https://openrouter.ai/api/v1"
            logger.info(f"No api_version specified, using default: {default_openrouter}")
            return default_openrouter
        else:
            # For other platforms, use TOML or default
            api_version = model_settings.get('api_version', "2024-08-06")
            # Validate if it's a date type and transform to string
            if isinstance(api_version, date):
                api_version = api_version.isoformat()
                logger.debug(f"Converted date to string: {api_version}")
            return api_version

    def _get_base_url(self, model_settings: Dict[str, Any], platform: str) -> str:
        """Get base URL with environment variable override support"""
        if platform == "openai":
            # Check environment variable first
            env_base_url = os.environ.get('OPENAI_BASE_URL')
            if env_base_url:
                logger.info(f"Using OPENAI_BASE_URL from environment: {env_base_url}")
                return env_base_url

            # Check TOML settings (for litellm compatibility)
            toml_url = model_settings.get('url')
            if toml_url:
                logger.debug(f"Using url from TOML: {toml_url}")
                return toml_url

            # Default to None (uses OpenAI's default endpoint)
            logger.debug("No base URL specified, using OpenAI default endpoint")
            return None
        elif platform == "openrouter":
            env_base_url = os.environ.get('OPENROUTER_BASE_URL')
            if env_base_url:
                logger.info(f"Using OPENROUTER_BASE_URL from environment: {env_base_url}")
                return env_base_url

            # Check TOML settings
            toml_url = model_settings.get('url')
            if toml_url:
                logger.debug(f"Using url from TOML: {toml_url}")
                return toml_url

            # Default to None (will raise error later if not set)
            default_openrouter = "https://openrouter.ai/api/v1"
            logger.debug(
                f"No base URL specified for OpenRouter, will raise error if not set, falling back to: {default_openrouter}"
            )
            return default_openrouter
        else:
            # For other platforms, use TOML settings
            return model_settings.get('url')

    def _is_reasoning_model(self, model_name: str) -> bool:
        """Check if model is a reasoning model that doesn't support temperature

        OpenAI's reasoning models (o1, o3, gpt-5 series) don't support temperature parameter
        """
        if not model_name:
            return False
        reasoning_prefixes = ('o1', 'o3', 'gpt-5')
        return model_name.startswith(reasoning_prefixes)

    def _create_llm_instance(self, model_settings: Dict[str, Any]):
        """Create LLM instance based on platform and settings"""
        platform = model_settings.get('platform')
        temperature = model_settings.get('temperature', 0.7)
        max_tokens = model_settings.get('max_tokens')
        assert max_tokens is not None, "max_tokens must be specified"
        # Handle environment variable overrides
        model_name = self._get_model_name(model_settings, platform)
        api_version = self._get_api_version(model_settings, platform)
        base_url = self._get_base_url(model_settings, platform)
        if platform == "azure":
            api_version = str(model_settings.get('api_version'))
            is_reasoning = self._is_reasoning_model(model_name)

            if is_reasoning:
                logger.debug(f"Creating AzureChatOpenAI reasoning model: {model_name} (no temperature)")
                llm = AzureChatOpenAI(
                    model_version=api_version,
                    timeout=61,
                    api_version="2025-04-01-preview",
                    azure_deployment=model_name + "-" + api_version,
                    max_completion_tokens=max_tokens,
                )
            else:
                logger.debug(f"Creating AzureChatOpenAI model: {model_name} - {api_version}")
                llm = AzureChatOpenAI(
                    timeout=61,
                    azure_deployment=model_name + "-" + api_version,
                    temperature=temperature,
                    max_tokens=max_tokens,
                )
        elif platform == "openai":
            is_reasoning = self._is_reasoning_model(model_name)

            # Build ChatOpenAI parameters
            openai_params = {
                "model_name": model_name,
                "max_tokens": max_tokens,
                "timeout": 61,
            }

            # Only add temperature for non-reasoning models
            if not is_reasoning:
                openai_params["temperature"] = temperature
            else:
                logger.debug(f"Skipping temperature for reasoning model: {model_name}")

            # Add API key if specified
            apikey_name = model_settings.get("apikey_name")
            if apikey_name:
                openai_params["openai_api_key"] = os.environ.get(apikey_name)

            # Add base URL if specified
            if base_url:
                openai_params["openai_api_base"] = base_url

            llm = ChatOpenAI(**openai_params)
        elif platform == "groq":
            logger.debug(f"Creating Groq model: {model_name}")
            llm = ChatGroq(
                max_tokens=max_tokens,
                model=model_name,
                temperature=temperature,
            )
        elif platform == "watsonx":
            llm = ChatWatsonx(
                model_id=model_name,
                temperature=temperature,
                max_tokens=max_tokens,
                project_id=os.environ['WATSONX_PROJECT_ID'],
            )
        elif platform == "rits":
            llm = ChatOpenAI(
                api_key=os.environ.get(model_settings.get('apikey_name')),
                base_url=model_settings.get('url'),
                max_tokens=max_tokens,
                model=model_name,
                temperature=temperature,
                seed=42,
            )
        elif platform == "rits-restricted":
            llm = ChatOpenAI(
                api_key=os.environ["RITS_API_KEY_RESTRICT"],
                base_url="http://nocodeui.sl.cloud9.ibm.com:4001",
                max_tokens=max_tokens,
                model=model_name,
                top_p=0.95,
                temperature=temperature,
                seed=42,
            )
        elif platform == "google-genai":
            logger.debug(f"Creating Google GenAI model: {model_name}")
            # Build ChatGoogleGenerativeAI parameters

            # Add API key if specified
            # apikey_name = model_settings.get("apikey_name")
            # if apikey_name:
            #     google_params["api_key"] = os.environ.get(apikey_name)

            llm = ChatGoogleGenerativeAI(
                api_key=os.environ.get("GOOGLE_API_kEY"),
                model=model_name,
                temperature=temperature,
                max_tokens=max_tokens,
            )
        elif platform == "openrouter":
            # OpenRouter uses OpenAI-compatible API
            logger.debug(f"Creating OpenRouter model: {model_name}")
            is_reasoning = self._is_reasoning_model(model_name)

            # Get API key from environment
            api_key = os.environ.get("OPENROUTER_API_KEY")
            if not api_key:
                raise ValueError("OPENROUTER_API_KEY environment variable not set")

            # Build OpenRouter parameters
            openrouter_params = {
                "model_name": model_name,
                "max_tokens": max_tokens,
                "timeout": 61,
                "openai_api_key": api_key,
                "openai_api_base": base_url,
            }

            # Only add temperature for non-reasoning models
            if not is_reasoning:
                openrouter_params["temperature"] = temperature
            else:
                logger.debug(f"Skipping temperature for reasoning model: {model_name}")

            # Optional: Add custom headers for OpenRouter features
            default_headers = {}

            # Add site URL and app name for OpenRouter analytics (optional)
            site_url = model_settings.get("site_url") or os.environ.get("OPENROUTER_SITE_URL")
            app_name = model_settings.get("app_name") or os.environ.get("OPENROUTER_APP_NAME")

            if site_url:
                default_headers["HTTP-Referer"] = site_url
            if app_name:
                default_headers["X-Title"] = app_name

            if default_headers:
                openrouter_params["default_headers"] = default_headers

            llm = ChatOpenAI(**openrouter_params)
        else:
            raise ValueError(f"Unsupported platform: {platform}")

        return llm

    def get_model(self, model_settings: Dict[str, Any]):
        """Get or create LLM instance for the given model settings

        Args:
            model_settings: Model configuration dictionary (must contain max_tokens)
        """
        max_tokens = model_settings.get('max_tokens')
        assert max_tokens is not None, "max_tokens must be specified in model_settings"
        # Check if pre-instantiated model is available
        if self._pre_instantiated_model is not None:
            logger.debug(f"Using pre-instantiated model: {type(self._pre_instantiated_model).__name__}")
            # Update parameters for the task
            updated_model = self._update_model_parameters(
                self._pre_instantiated_model, temperature=0.1, max_tokens=max_tokens
            )
            return updated_model

        # Get resolved values for logging and cache key
        platform = model_settings.get('platform', 'unknown')
        model_name = self._get_model_name(model_settings, platform)
        api_version = self._get_api_version(model_settings, platform)
        base_url = self._get_base_url(model_settings, platform)

        cache_key = self._create_cache_key(model_settings)

        if cache_key in self._models:
            logger.debug(
                f"Returning cached model: {platform}/{model_name} (api_version={api_version}, base_url={base_url})"
            )
            # Update parameters for the task
            cached_model = self._models[cache_key]
            updated_model = self._update_model_parameters(
                cached_model, temperature=0.1, max_tokens=max_tokens, max_completion_tokens=max_tokens
            )
            return updated_model

        # Create new model instance
        logger.debug(
            f"Creating new model: {platform}/{model_name} (api_version={api_version}, base_url={base_url})"
        )
        model = self._create_llm_instance(model_settings)
        self._models[cache_key] = model

        # Update parameters for the task
        updated_model = self._update_model_parameters(model, temperature=0.1, max_tokens=max_tokens)
        return updated_model