Spaces:
Running
Running
File size: 22,921 Bytes
0646b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import threading
from datetime import date
from typing import Dict, Any, Optional
import hashlib
import json
import os
from langchain_openai import ChatOpenAI, AzureChatOpenAI
from langchain_ibm import ChatWatsonx
from langchain_core.language_models.chat_models import BaseChatModel
from loguru import logger
try:
from langchain_groq import ChatGroq
except ImportError:
logger.warning("Langchain Groq not installed, using OpenAI instead")
ChatGroq = None
try:
from langchain_google_genai import ChatGoogleGenerativeAI
except ImportError:
logger.warning("Langchain Google GenAI not installed, using OpenAI instead")
ChatGoogleGenerativeAI = None
class LLMManager:
"""Singleton class to manage LLM instances based on agent name and settings"""
_instance = None
_lock = threading.Lock()
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not self._initialized:
self._models: Dict[str, Any] = {}
self._pre_instantiated_model: Optional[BaseChatModel] = None
self._initialized = True
def convert_dates_to_strings(self, obj):
if isinstance(obj, dict):
return {k: self.convert_dates_to_strings(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [self.convert_dates_to_strings(item) for item in obj]
elif isinstance(obj, date):
return obj.isoformat()
else:
return obj
def set_llm(self, model: BaseChatModel) -> None:
"""Set a pre-instantiated model to use for all tasks
Args:
model: Pre-instantiated ChatOpenAI or BaseChatModel instance
"""
if not isinstance(model, BaseChatModel):
raise ValueError("Model must be an instance of BaseChatModel or its subclass")
self._pre_instantiated_model = model
logger.info(f"Pre-instantiated model set: {type(model).__name__}")
def _update_model_parameters(
self,
model: BaseChatModel,
temperature: float = 0.1,
max_tokens: int = 1000,
max_completion_tokens: Optional[int] = None,
) -> BaseChatModel:
"""Update model parameters (temperature, max_tokens, and max_completion_tokens) for the task
Args:
model: The model to update
temperature: Temperature setting (default: 0.1)
max_tokens: Maximum tokens for the task
max_completion_tokens: Maximum completion tokens for the task (defaults to max_tokens if not provided)
Returns:
Updated model with new parameters
"""
model_kwargs = {}
if hasattr(model, 'model_kwargs') and model.model_kwargs is not None:
model_kwargs = model.model_kwargs.copy()
# Check if this is a reasoning model
model_name = getattr(model, 'model_name', '') or getattr(model, 'model', '')
is_reasoning = self._is_reasoning_model(model_name)
# Update temperature only for non-reasoning models
if not is_reasoning:
if hasattr(model, 'temperature'):
logger.debug(f"Updating model temperature: {temperature}")
if hasattr(model, 'model_kwargs') and model.model_kwargs is not None:
logger.debug(f"Model keys: {model.model_kwargs.keys()}")
logger.debug(f"Model instance: {type(model)}")
model.temperature = temperature
elif 'temperature' in model_kwargs:
model_kwargs['temperature'] = temperature
else:
logger.debug(f"Skipping temperature update for reasoning model: {model_name}")
# Set max_completion_tokens (defaults to max_tokens if not provided)
completion_tokens = max_completion_tokens if max_completion_tokens is not None else max_tokens
# Update max_tokens
if hasattr(model, 'max_tokens'):
model.max_tokens = max_tokens
elif 'max_tokens' in model_kwargs:
model_kwargs['max_tokens'] = max_tokens
# Update max_completion_tokens
if hasattr(model, 'max_completion_tokens'):
model.max_completion_tokens = completion_tokens
elif 'max_completion_tokens' in model_kwargs:
model_kwargs['max_completion_tokens'] = completion_tokens
# Update model_kwargs if it exists
if hasattr(model, 'model_kwargs') and model.model_kwargs is not None:
model.model_kwargs = model_kwargs
logger.debug(
f"Updated model parameters: temperature={temperature}, max_tokens={max_tokens}, max_completion_tokens={completion_tokens}"
)
return model
def clear_pre_instantiated_model(self) -> None:
"""Clear the pre-instantiated model and return to normal model creation"""
self._pre_instantiated_model = None
logger.info("Pre-instantiated model cleared, returning to normal model creation")
def _create_cache_key(self, model_settings: Dict[str, Any]) -> str:
"""Create a unique cache key from model settings including resolved values"""
# Sort settings to ensure consistent hashing
d = self.convert_dates_to_strings(model_settings.to_dict())
keys_to_delete = [key for key in d if "prompt" in key]
for key in keys_to_delete:
del d[key]
# Add resolved values to ensure cache key reflects actual configuration
platform = model_settings.get('platform')
if platform:
d['resolved_model_name'] = self._get_model_name(model_settings, platform)
d['resolved_api_version'] = self._get_api_version(model_settings, platform)
d['resolved_base_url'] = self._get_base_url(model_settings, platform)
settings_str = json.dumps(d, sort_keys=True)
return hashlib.md5(settings_str.encode()).hexdigest()
def _get_model_name(self, model_settings: Dict[str, Any], platform: str) -> str:
"""Get model name with environment variable override support"""
# Check if model_name is defined in TOML settings
toml_model_name = model_settings.get('model_name')
if platform == "openai":
# For OpenAI, check environment variables
env_model_name = os.environ.get('MODEL_NAME')
if env_model_name:
logger.info(f"Using MODEL_NAME from environment: {env_model_name}")
return env_model_name
elif toml_model_name:
logger.debug(f"Using model_name from TOML: {toml_model_name}")
return toml_model_name
else:
# Default fallback
default_model = "gpt-4o"
logger.info(f"No model_name specified, using default: {default_model}")
return default_model
elif platform == "groq":
# For Groq, check environment variables
env_model_name = os.environ.get('MODEL_NAME')
if env_model_name:
logger.info(f"Using MODEL_NAME from environment for Groq: {env_model_name}")
return env_model_name
elif toml_model_name:
logger.debug(f"Using model_name from TOML: {toml_model_name}")
return toml_model_name
else:
# Default fallback
default_model = "openai/gpt-oss-20b"
logger.info(f"No model_name specified, using default: {default_model}")
return default_model
elif platform == "watsonx":
# For WatsonX, check environment variables
env_model_name = os.environ.get('MODEL_NAME')
if env_model_name:
logger.info(f"Using MODEL_NAME from environment for WatsonX: {env_model_name}")
return env_model_name
elif toml_model_name:
logger.debug(f"Using model_name from TOML: {toml_model_name}")
return toml_model_name
else:
# Default fallback for WatsonX
default_model = "meta-llama/llama-4-maverick-17b-128e-instruct-fp8"
logger.info(f"No model_name specified for WatsonX, using default: {default_model}")
return default_model
elif platform == "azure":
# For Azure, check environment variables
env_model_name = os.environ.get('MODEL_NAME')
if env_model_name:
logger.info(f"Using MODEL_NAME from environment for Azure: {env_model_name}")
return env_model_name
elif toml_model_name:
logger.debug(f"Using model_name from TOML: {toml_model_name}")
return toml_model_name
else:
# Default fallback for Azure
default_model = "gpt-4o"
logger.info(f"No model_name specified for Azure, using default: {default_model}")
return default_model
elif platform == "google-genai":
# For Google GenAI, check environment variables
env_model_name = os.environ.get('MODEL_NAME')
if env_model_name:
logger.info(f"Using MODEL_NAME from environment for Google GenAI: {env_model_name}")
return env_model_name
elif toml_model_name:
logger.debug(f"Using model_name from TOML: {toml_model_name}")
return toml_model_name
else:
# Default fallback for Google GenAI
default_model = "gemini-1.5-pro"
logger.info(f"No model_name specified for Google GenAI, using default: {default_model}")
return default_model
elif platform == "openrouter":
env_model_name = os.environ.get('MODEL_NAME')
if env_model_name:
logger.info(f"Using MODEL_NAME from environment for OpenRouter: {env_model_name}")
return env_model_name
elif toml_model_name:
logger.debug(f"Using model_name from TOML: {toml_model_name}")
return toml_model_name
else:
default_model = "anthropic/claude-3.5-sonnet"
logger.info(f"No model_name specified for OpenRouter, using default: {default_model}")
return default_model
else:
# For other platforms, use TOML or default
if toml_model_name:
return toml_model_name
else:
raise ValueError(f"model_name must be specified for platform: {platform}")
def _get_api_version(self, model_settings: Dict[str, Any], platform: str) -> str:
"""Get API version with environment variable override support"""
if platform == "openai":
# Check environment variable first
env_api_version = os.environ.get('OPENAI_API_VERSION')
if env_api_version:
logger.info(f"Using OPENAI_API_VERSION from environment: {env_api_version}")
return env_api_version
# Check TOML settings
toml_api_version = model_settings.get('api_version')
if toml_api_version:
# Validate if it's a date type and transform to string
if isinstance(toml_api_version, date):
toml_api_version = toml_api_version.isoformat()
logger.debug(f"Converted date to string: {toml_api_version}")
logger.debug(f"Using api_version from TOML: {toml_api_version}")
return toml_api_version
# Default fallback
default_openrouter = "https://openrouter.ai/api/v1"
logger.info(f"No api_version specified, using default: {default_openrouter}")
return default_openrouter
else:
# For other platforms, use TOML or default
api_version = model_settings.get('api_version', "2024-08-06")
# Validate if it's a date type and transform to string
if isinstance(api_version, date):
api_version = api_version.isoformat()
logger.debug(f"Converted date to string: {api_version}")
return api_version
def _get_base_url(self, model_settings: Dict[str, Any], platform: str) -> str:
"""Get base URL with environment variable override support"""
if platform == "openai":
# Check environment variable first
env_base_url = os.environ.get('OPENAI_BASE_URL')
if env_base_url:
logger.info(f"Using OPENAI_BASE_URL from environment: {env_base_url}")
return env_base_url
# Check TOML settings (for litellm compatibility)
toml_url = model_settings.get('url')
if toml_url:
logger.debug(f"Using url from TOML: {toml_url}")
return toml_url
# Default to None (uses OpenAI's default endpoint)
logger.debug("No base URL specified, using OpenAI default endpoint")
return None
elif platform == "openrouter":
env_base_url = os.environ.get('OPENROUTER_BASE_URL')
if env_base_url:
logger.info(f"Using OPENROUTER_BASE_URL from environment: {env_base_url}")
return env_base_url
# Check TOML settings
toml_url = model_settings.get('url')
if toml_url:
logger.debug(f"Using url from TOML: {toml_url}")
return toml_url
# Default to None (will raise error later if not set)
default_openrouter = "https://openrouter.ai/api/v1"
logger.debug(
f"No base URL specified for OpenRouter, will raise error if not set, falling back to: {default_openrouter}"
)
return default_openrouter
else:
# For other platforms, use TOML settings
return model_settings.get('url')
def _is_reasoning_model(self, model_name: str) -> bool:
"""Check if model is a reasoning model that doesn't support temperature
OpenAI's reasoning models (o1, o3, gpt-5 series) don't support temperature parameter
"""
if not model_name:
return False
reasoning_prefixes = ('o1', 'o3', 'gpt-5')
return model_name.startswith(reasoning_prefixes)
def _create_llm_instance(self, model_settings: Dict[str, Any]):
"""Create LLM instance based on platform and settings"""
platform = model_settings.get('platform')
temperature = model_settings.get('temperature', 0.7)
max_tokens = model_settings.get('max_tokens')
assert max_tokens is not None, "max_tokens must be specified"
# Handle environment variable overrides
model_name = self._get_model_name(model_settings, platform)
api_version = self._get_api_version(model_settings, platform)
base_url = self._get_base_url(model_settings, platform)
if platform == "azure":
api_version = str(model_settings.get('api_version'))
is_reasoning = self._is_reasoning_model(model_name)
if is_reasoning:
logger.debug(f"Creating AzureChatOpenAI reasoning model: {model_name} (no temperature)")
llm = AzureChatOpenAI(
model_version=api_version,
timeout=61,
api_version="2025-04-01-preview",
azure_deployment=model_name + "-" + api_version,
max_completion_tokens=max_tokens,
)
else:
logger.debug(f"Creating AzureChatOpenAI model: {model_name} - {api_version}")
llm = AzureChatOpenAI(
timeout=61,
azure_deployment=model_name + "-" + api_version,
temperature=temperature,
max_tokens=max_tokens,
)
elif platform == "openai":
is_reasoning = self._is_reasoning_model(model_name)
# Build ChatOpenAI parameters
openai_params = {
"model_name": model_name,
"max_tokens": max_tokens,
"timeout": 61,
}
# Only add temperature for non-reasoning models
if not is_reasoning:
openai_params["temperature"] = temperature
else:
logger.debug(f"Skipping temperature for reasoning model: {model_name}")
# Add API key if specified
apikey_name = model_settings.get("apikey_name")
if apikey_name:
openai_params["openai_api_key"] = os.environ.get(apikey_name)
# Add base URL if specified
if base_url:
openai_params["openai_api_base"] = base_url
llm = ChatOpenAI(**openai_params)
elif platform == "groq":
logger.debug(f"Creating Groq model: {model_name}")
llm = ChatGroq(
max_tokens=max_tokens,
model=model_name,
temperature=temperature,
)
elif platform == "watsonx":
llm = ChatWatsonx(
model_id=model_name,
temperature=temperature,
max_tokens=max_tokens,
project_id=os.environ['WATSONX_PROJECT_ID'],
)
elif platform == "rits":
llm = ChatOpenAI(
api_key=os.environ.get(model_settings.get('apikey_name')),
base_url=model_settings.get('url'),
max_tokens=max_tokens,
model=model_name,
temperature=temperature,
seed=42,
)
elif platform == "rits-restricted":
llm = ChatOpenAI(
api_key=os.environ["RITS_API_KEY_RESTRICT"],
base_url="http://nocodeui.sl.cloud9.ibm.com:4001",
max_tokens=max_tokens,
model=model_name,
top_p=0.95,
temperature=temperature,
seed=42,
)
elif platform == "google-genai":
logger.debug(f"Creating Google GenAI model: {model_name}")
# Build ChatGoogleGenerativeAI parameters
# Add API key if specified
# apikey_name = model_settings.get("apikey_name")
# if apikey_name:
# google_params["api_key"] = os.environ.get(apikey_name)
llm = ChatGoogleGenerativeAI(
api_key=os.environ.get("GOOGLE_API_kEY"),
model=model_name,
temperature=temperature,
max_tokens=max_tokens,
)
elif platform == "openrouter":
# OpenRouter uses OpenAI-compatible API
logger.debug(f"Creating OpenRouter model: {model_name}")
is_reasoning = self._is_reasoning_model(model_name)
# Get API key from environment
api_key = os.environ.get("OPENROUTER_API_KEY")
if not api_key:
raise ValueError("OPENROUTER_API_KEY environment variable not set")
# Build OpenRouter parameters
openrouter_params = {
"model_name": model_name,
"max_tokens": max_tokens,
"timeout": 61,
"openai_api_key": api_key,
"openai_api_base": base_url,
}
# Only add temperature for non-reasoning models
if not is_reasoning:
openrouter_params["temperature"] = temperature
else:
logger.debug(f"Skipping temperature for reasoning model: {model_name}")
# Optional: Add custom headers for OpenRouter features
default_headers = {}
# Add site URL and app name for OpenRouter analytics (optional)
site_url = model_settings.get("site_url") or os.environ.get("OPENROUTER_SITE_URL")
app_name = model_settings.get("app_name") or os.environ.get("OPENROUTER_APP_NAME")
if site_url:
default_headers["HTTP-Referer"] = site_url
if app_name:
default_headers["X-Title"] = app_name
if default_headers:
openrouter_params["default_headers"] = default_headers
llm = ChatOpenAI(**openrouter_params)
else:
raise ValueError(f"Unsupported platform: {platform}")
return llm
def get_model(self, model_settings: Dict[str, Any]):
"""Get or create LLM instance for the given model settings
Args:
model_settings: Model configuration dictionary (must contain max_tokens)
"""
max_tokens = model_settings.get('max_tokens')
assert max_tokens is not None, "max_tokens must be specified in model_settings"
# Check if pre-instantiated model is available
if self._pre_instantiated_model is not None:
logger.debug(f"Using pre-instantiated model: {type(self._pre_instantiated_model).__name__}")
# Update parameters for the task
updated_model = self._update_model_parameters(
self._pre_instantiated_model, temperature=0.1, max_tokens=max_tokens
)
return updated_model
# Get resolved values for logging and cache key
platform = model_settings.get('platform', 'unknown')
model_name = self._get_model_name(model_settings, platform)
api_version = self._get_api_version(model_settings, platform)
base_url = self._get_base_url(model_settings, platform)
cache_key = self._create_cache_key(model_settings)
if cache_key in self._models:
logger.debug(
f"Returning cached model: {platform}/{model_name} (api_version={api_version}, base_url={base_url})"
)
# Update parameters for the task
cached_model = self._models[cache_key]
updated_model = self._update_model_parameters(
cached_model, temperature=0.1, max_tokens=max_tokens, max_completion_tokens=max_tokens
)
return updated_model
# Create new model instance
logger.debug(
f"Creating new model: {platform}/{model_name} (api_version={api_version}, base_url={base_url})"
)
model = self._create_llm_instance(model_settings)
self._models[cache_key] = model
# Update parameters for the task
updated_model = self._update_model_parameters(model, temperature=0.1, max_tokens=max_tokens)
return updated_model
|