Spaces:
Running
on
Zero
Running
on
Zero
| ## Restormer: Efficient Transformer for High-Resolution Image Restoration | |
| ## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang | |
| ## https://arxiv.org/abs/2111.09881 | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from pdb import set_trace as stx | |
| import numbers | |
| from einops import rearrange | |
| ########################################################################## | |
| ## Layer Norm | |
| def to_3d(x): | |
| return rearrange(x, 'b c h w -> b (h w) c') | |
| def to_4d(x,h,w): | |
| return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w) | |
| class BiasFree_LayerNorm(nn.Module): | |
| def __init__(self, normalized_shape): | |
| super(BiasFree_LayerNorm, self).__init__() | |
| if isinstance(normalized_shape, numbers.Integral): | |
| normalized_shape = (normalized_shape,) | |
| normalized_shape = torch.Size(normalized_shape) | |
| assert len(normalized_shape) == 1 | |
| self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
| self.normalized_shape = normalized_shape | |
| def forward(self, x): | |
| sigma = x.var(-1, keepdim=True, unbiased=False) | |
| return x / torch.sqrt(sigma+1e-5) * self.weight | |
| class WithBias_LayerNorm(nn.Module): | |
| def __init__(self, normalized_shape): | |
| super(WithBias_LayerNorm, self).__init__() | |
| if isinstance(normalized_shape, numbers.Integral): | |
| normalized_shape = (normalized_shape,) | |
| normalized_shape = torch.Size(normalized_shape) | |
| assert len(normalized_shape) == 1 | |
| self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
| self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
| self.normalized_shape = normalized_shape | |
| def forward(self, x): | |
| mu = x.mean(-1, keepdim=True) | |
| sigma = x.var(-1, keepdim=True, unbiased=False) | |
| return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias | |
| class LayerNorm(nn.Module): | |
| def __init__(self, nf, LayerNorm_type): | |
| super(LayerNorm, self).__init__() | |
| if LayerNorm_type =='BiasFree': | |
| self.body = BiasFree_LayerNorm(nf) | |
| else: | |
| self.body = WithBias_LayerNorm(nf) | |
| def forward(self, x): | |
| h, w = x.shape[-2:] | |
| return to_4d(self.body(to_3d(x)), h, w) | |
| ########################################################################## | |
| ## Gated-Dconv Feed-Forward Network (GDFN) | |
| class FeedForward(nn.Module): | |
| def __init__(self, nf, ffn_expansion_factor, bias): | |
| super(FeedForward, self).__init__() | |
| hidden_features = int(nf*ffn_expansion_factor) | |
| self.project_in = nn.Conv2d(nf, hidden_features*2, kernel_size=1, bias=bias) | |
| self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias) | |
| self.project_out = nn.Conv2d(hidden_features, nf, kernel_size=1, bias=bias) | |
| def forward(self, x): | |
| x = self.project_in(x) | |
| x1, x2 = self.dwconv(x).chunk(2, dim=1) | |
| x = F.gelu(x1) * x2 | |
| x = self.project_out(x) | |
| return x | |
| ########################################################################## | |
| ## Multi-DConv Head Transposed Self-Attention (MDTA) | |
| class Attention(nn.Module): | |
| def __init__(self, nf, num_heads, bias): | |
| super(Attention, self).__init__() | |
| self.num_heads = num_heads | |
| self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) | |
| self.qkv = nn.Conv2d(nf, nf*3, kernel_size=1, bias=bias) | |
| self.qkv_dwconv = nn.Conv2d(nf*3, nf*3, kernel_size=3, stride=1, padding=1, groups=nf*3, bias=bias) | |
| self.project_out = nn.Conv2d(nf, nf, kernel_size=1, bias=bias) | |
| self.emb_layers = nn.Sequential( | |
| nn.Conv2d(1, nf, 1, 1, 0, bias=True), | |
| nn.SiLU(inplace=True), | |
| nn.Conv2d(nf, nf, 1, 1, 0, bias=True), | |
| nn.SiLU(inplace=True), | |
| nn.Conv2d(nf, nf*3*2, 1, 1, 0, bias=True) | |
| ) | |
| def forward(self, x, t): | |
| """ | |
| x: [B, C, H, W] | |
| t: [B, 1, 1, 1] 或 [B, 1, H, W] 的时间信号 | |
| """ | |
| b,c,h,w = x.shape | |
| qkv = self.qkv_dwconv(self.qkv(x)) | |
| if len(t.shape) > 0 and t.shape[-1] != 1: | |
| t = F.interpolate(t, size=x.shape[2:], mode='bilinear', align_corners=False) | |
| scale, shift = self.emb_layers(t).chunk(2, dim=1) | |
| qkv = qkv * (1+scale) + shift | |
| q,k,v = qkv.chunk(3, dim=1) | |
| q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads) | |
| k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads) | |
| v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads) | |
| q = torch.nn.functional.normalize(q, dim=-1) | |
| k = torch.nn.functional.normalize(k, dim=-1) | |
| attn = (q @ k.transpose(-2, -1)) * self.temperature | |
| attn = attn.softmax(dim=-1) | |
| out = (attn @ v) | |
| out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w) | |
| out = self.project_out(out) | |
| return out | |
| ########################################################################## | |
| class TransformerBlock(nn.Module): | |
| def __init__(self, nf, num_heads, ffn_expansion_factor, bias, LayerNorm_type): | |
| super(TransformerBlock, self).__init__() | |
| self.norm1 = LayerNorm(nf, LayerNorm_type) | |
| self.attn = Attention(nf, num_heads, bias) | |
| self.norm2 = LayerNorm(nf, LayerNorm_type) | |
| self.ffn = FeedForward(nf, ffn_expansion_factor, bias) | |
| def forward(self, x, t): | |
| x = x + self.attn(self.norm1(x), t) | |
| x = x + self.ffn(self.norm2(x)) | |
| return x | |
| ########################################################################## | |
| ## Overlapped image patch embedding with 3x3 Conv | |
| class OverlapPatchEmbed(nn.Module): | |
| def __init__(self, in_c=3, embed_dim=48, bias=False): | |
| super(OverlapPatchEmbed, self).__init__() | |
| self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias) | |
| def forward(self, x): | |
| x = self.proj(x) | |
| return x | |
| ########################################################################## | |
| ## Resizing modules | |
| class Downsample(nn.Module): | |
| def __init__(self, n_feat): | |
| super(Downsample, self).__init__() | |
| self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False), | |
| nn.PixelUnshuffle(2)) | |
| def forward(self, x): | |
| return self.body(x) | |
| class Upsample(nn.Module): | |
| def __init__(self, n_feat): | |
| super(Upsample, self).__init__() | |
| self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False), | |
| nn.PixelShuffle(2)) | |
| def forward(self, x): | |
| return self.body(x) | |
| ########################################################################## | |
| ##---------- Restormer ----------------------- | |
| class Restormer(nn.Module): | |
| def __init__(self, args={}): | |
| super().__init__() | |
| self.args = args | |
| # 设置默认参数 | |
| self.in_nc = in_nc = self.args.get('in_nc', 3) | |
| self.out_nc = out_nc = self.args.get('out_nc', 3) | |
| self.nf = nf = self.args.get('nf', 48) | |
| self.nb = nb = self.args.get('nb', [4, 6, 6, 8]) | |
| self.num_refinement_blocks = num_refinement_blocks = self.args.get('num_refinement_blocks', 4) | |
| self.heads = heads = self.args.get('heads', [1, 2, 4, 8]) | |
| self.ffn_expansion_factor = ffn_expansion_factor = self.args.get('ffn_expansion_factor', 2.66) | |
| self.bias = bias = self.args.get('bias', False) | |
| self.LayerNorm_type = LayerNorm_type = self.args.get('LayerNorm_type', 'WithBias') | |
| self.nframes = nframes = self.args.get('nframes', 1) | |
| self.res = self.args.get('res', True) | |
| self.rectified = self.args.get('rectified', False) | |
| self.vpred = self.args.get('vpred', False) | |
| self.patch_embed = OverlapPatchEmbed(in_nc*nframes, nf) | |
| # Encoder blocks | |
| self.encoder_level1 = nn.Sequential(*[ | |
| TransformerBlock( | |
| nf=nf, | |
| num_heads=heads[0], | |
| ffn_expansion_factor=ffn_expansion_factor, | |
| bias=bias, | |
| LayerNorm_type=LayerNorm_type | |
| ) for i in range(nb[0]) | |
| ]) | |
| # Downsample Level 1 → Level 2 | |
| self.down1_2 = Downsample(nf) | |
| self.encoder_level2 = nn.Sequential(*[ | |
| TransformerBlock( | |
| nf=int(nf * 2**1), | |
| num_heads=heads[1], | |
| ffn_expansion_factor=ffn_expansion_factor, | |
| bias=bias, | |
| LayerNorm_type=LayerNorm_type | |
| ) for i in range(nb[1]) | |
| ]) | |
| # Downsample Level 2 → Level 3 | |
| self.down2_3 = Downsample(int(nf * 2**1)) | |
| self.encoder_level3 = nn.Sequential(*[ | |
| TransformerBlock( | |
| nf=int(nf * 2**2), | |
| num_heads=heads[2], | |
| ffn_expansion_factor=ffn_expansion_factor, | |
| bias=bias, | |
| LayerNorm_type=LayerNorm_type | |
| ) for i in range(nb[2]) | |
| ]) | |
| # Downsample Level 3 → Level 4 | |
| self.down3_4 = Downsample(int(nf * 2**2)) | |
| self.latent = nn.Sequential(*[ | |
| TransformerBlock( | |
| nf=int(nf * 2**3), | |
| num_heads=heads[3], | |
| ffn_expansion_factor=ffn_expansion_factor, | |
| bias=bias, | |
| LayerNorm_type=LayerNorm_type | |
| ) for i in range(nb[3]) | |
| ]) | |
| # Decoder blocks | |
| # Upsample Level 4 → Level 3 | |
| self.up4_3 = Upsample(int(nf * 2**3)) | |
| self.reduce_chan_level3 = nn.Conv2d( | |
| int(nf * 2**3), | |
| int(nf * 2**2), | |
| kernel_size=1, | |
| bias=bias | |
| ) | |
| self.decoder_level3 = nn.Sequential(*[ | |
| TransformerBlock( | |
| nf=int(nf * 2**2), | |
| num_heads=heads[2], | |
| ffn_expansion_factor=ffn_expansion_factor, | |
| bias=bias, | |
| LayerNorm_type=LayerNorm_type | |
| ) for i in range(nb[2]) | |
| ]) | |
| # Upsample Level 3 → Level 2 | |
| self.up3_2 = Upsample(int(nf * 2**2)) | |
| self.reduce_chan_level2 = nn.Conv2d( | |
| int(nf * 2**2), | |
| int(nf * 2**1), | |
| kernel_size=1, | |
| bias=bias | |
| ) | |
| self.decoder_level2 = nn.Sequential(*[ | |
| TransformerBlock( | |
| nf=int(nf * 2**1), | |
| num_heads=heads[1], | |
| ffn_expansion_factor=ffn_expansion_factor, | |
| bias=bias, | |
| LayerNorm_type=LayerNorm_type | |
| ) for i in range(nb[1]) | |
| ]) | |
| # Upsample Level 2 → Level 1 | |
| self.up2_1 = Upsample(int(nf * 2**1)) | |
| self.decoder_level1 = nn.Sequential(*[ | |
| TransformerBlock( | |
| nf=int(nf * 2**1), | |
| num_heads=heads[0], | |
| ffn_expansion_factor=ffn_expansion_factor, | |
| bias=bias, | |
| LayerNorm_type=LayerNorm_type | |
| ) for i in range(nb[0]) | |
| ]) | |
| # Refinement and output | |
| self.refinement = nn.Sequential(*[ | |
| TransformerBlock( | |
| nf=int(nf * 2**1), | |
| num_heads=heads[0], | |
| ffn_expansion_factor=ffn_expansion_factor, | |
| bias=bias, | |
| LayerNorm_type=LayerNorm_type | |
| ) for i in range(num_refinement_blocks) | |
| ]) | |
| self.output = nn.Conv2d( | |
| int(nf * 2**1), | |
| out_nc, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1, | |
| bias=bias | |
| ) | |
| def layer_by_layer(self, modules, x, t): | |
| # 手动处理需要t的模块 | |
| for layer in modules: | |
| if isinstance(layer, TransformerBlock): | |
| x = layer(x, t) # 传递t | |
| else: | |
| x = layer(x) | |
| return x | |
| def forward(self, inp_img, t): | |
| if self.rectified: | |
| t = t / (1 + t)# sigma->t | |
| inp_img = inp_img * (1-t) | |
| # Encoder | |
| inp_enc_level1 = self.patch_embed(inp_img) | |
| out_enc_level1 = self.layer_by_layer(self.encoder_level1, inp_enc_level1, t) | |
| inp_enc_level2 = self.down1_2(out_enc_level1) | |
| out_enc_level2 = self.layer_by_layer(self.encoder_level2, inp_enc_level2, t) | |
| inp_enc_level3 = self.down2_3(out_enc_level2) | |
| out_enc_level3 = self.layer_by_layer(self.encoder_level3, inp_enc_level3, t) | |
| inp_enc_level4 = self.down3_4(out_enc_level3) | |
| latent = self.layer_by_layer(self.latent, inp_enc_level4, t) | |
| # Decoder | |
| inp_dec_level3 = self.up4_3(latent) | |
| inp_dec_level3 = torch.cat([inp_dec_level3, out_enc_level3], 1) | |
| inp_dec_level3 = self.reduce_chan_level3(inp_dec_level3) | |
| out_dec_level3 = self.layer_by_layer(self.decoder_level3, inp_dec_level3, t) | |
| inp_dec_level2 = self.up3_2(out_dec_level3) | |
| inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1) | |
| inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2) | |
| out_dec_level2 = self.layer_by_layer(self.decoder_level2, inp_dec_level2, t) | |
| inp_dec_level1 = self.up2_1(out_dec_level2) | |
| inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1) | |
| out_dec_level1 = self.layer_by_layer(self.decoder_level1, inp_dec_level1, t) | |
| # Refinement | |
| out_dec_level1 = self.layer_by_layer(self.refinement, out_dec_level1, t) | |
| out = self.output(out_dec_level1) | |
| if not self.vpred: | |
| if self.res: out += inp_img | |
| if self.rectified: out /= (1-t) | |
| return out |