YOND / app_function.py
hansen97's picture
net.to(self.device) update
1f3466c
raw
history blame
22 kB
import numpy as np
import rawpy
from PIL import Image
import torch
import yaml
import gradio as gr
import tempfile
import spaces
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import time
from torch.optim import Adam, lr_scheduler
from data_process import *
from utils import *
from archs import *
import sys
# 将 dist 目录添加到 Python 搜索路径
sys.path.append("./dist")
# from dist.isp_algos import *
from isp_algos import VST, inverse_VST, ddim, BiasLUT, SimpleNLF
from bm3d import bm3d
class YOND_Backend:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#self.device = torch.device('cpu') # 强制使用CPU,避免CUDA相关问题
# 初始化处理参数
self.p = {
"ratio": 1.0,
"ispgain": 1.0,
"h": 2160,
"w": 3840,
"bl": 64.0,
"wp": 1023.0,
"gain": 0.0,
"sigma": 0.0,
"wb": [2.0, 1.0, 2.0],
"ccm": np.eye(3),
"scale": 959.0, # 1023-64
"ransac": False,
"ddim_mode": False,
}
# 状态变量
self.raw_data = None
self.denoised_data = None
self.denoised_npy = None
self.denoised_rgb = None
self.mask_data = None
self.yond = None
self.bias_lut = None
# 新增:释放模型资源的方法
def unload_model(self):
if self.yond is not None:
del self.yond
self.yond = None
self.bias_lut = None
torch.cuda.empty_cache() # 清理GPU缓存
print("Model has unloaded, please reload config")
gr.Success("Model has unloaded, please reload config")
# 新增:清理缓存的方法
def clear_cache(self):
# 清理处理过程中的临时缓存、中间变量等
self.raw_data = None
self.denoised_data = None
self.denoised_npy = None
self.denoised_rgb = None
self.mask_data = None
gc.collect()
print("Images has clear, please reload images")
gr.Success("Images has clear, please reload images")
def update_param(self, param, value):
"""更新处理参数"""
try:
if param in ['h', 'w']:
self.p[param] = int(value)
else:
self.p[param] = float(value)
# 自动更新相关参数
if param in ['wp', 'bl']:
self.p['scale'] = self.p['wp'] - self.p['bl']
except (ValueError, TypeError) as e:
gr.Error(f"参数更新失败: {str(e)}")
raise ValueError(f"无效的参数值: {value}") from e
def load_config(self, config_path):
"""加载配置文件"""
try:
self.yond = YOND_anytest(config_path, self.device)
gr.Success(f"配置加载成功: {config_path}", duration=2)
gr.Success(f"当前设备: {self.device}", duration=2)
except Exception as e:
gr.Error(f"配置加载失败: {str(e)}")
raise RuntimeError(f"配置加载失败: {str(e)}")
args = self.yond.args
if 'pipeline' in args:
self.p.update(args['pipeline'])
else:
self.p.update({'epoch':10, 'sigma_t':0.8, 'eta_t':0.85})
model_path = f"{self.yond.fast_ckpt}/{self.yond.yond_name}_last_model.pth"
self.load_model(model_path)
# return model_path
def load_model(self, model_path):
"""加载预训练模型"""
try:
# 加载模型权重
self.yond.load_model(model_path)
self.bias_lut = BiasLUT(lut_path='checkpoints/bias_lut_2d.npy')
if self.bias_lut is None:
gr.Error(f"BiasLUT加载失败: {os.path.exists('checkpoints/bias_lut_2d.npy')}")
gr.Success(f"模型加载成功: {model_path}", duration=2)
except Exception as e:
gr.Error(f"模型加载失败: {str(e)}")
raise RuntimeError(f"模型加载失败: {str(e)}") from e
def process_image(self, file_path, h, w, bl, wp, ratio, ispgain):
"""处理原始图像文件"""
try:
gr.Warning("正在可视化图像")
# 更新处理参数
self.update_param('h', h)
self.update_param('w', w)
self.update_param('bl', bl)
self.update_param('wp', wp)
self.update_param('ratio', ratio)
self.update_param('ispgain', ispgain)
# 重新初始化
self.raw_data = None
self.denoised_data = None
self.mask_data = None
self.p.update({'wb':[2,1,2], 'ccm':np.eye(3)})
if file_path.lower().endswith(('.arw','.dng','.nef','.cr2')):
with rawpy.imread(str(file_path)) as raw:
self.raw_data = raw.raw_image_visible.astype(np.uint16)
wb, ccm = self._extract_color_params(raw)
h, w = self.raw_data.shape
bl, wp = raw.black_level_per_channel[0], raw.white_level
scale = wp - bl
self.p.update({'wb':wb,'ccm':ccm,'h':h,'w':w,'bl':bl,'wp':wp,'scale':scale})
elif file_path.lower().endswith(('.raw', '.npy')):
try:
self.raw_data = np.fromfile(file_path, dtype=np.uint16)
self.raw_data = self.raw_data.reshape(
self.p['h'], self.p['w']
)
except Exception as e:
gr.Warning(f"默认参数读取失败: {e}, 尝试使用魔↑术↓技↑巧↓")
info = rawread(file_path)
self.raw_data = info['raw']
self.p.update({
'h': info['h'], 'w': info['w'],
'bl': info['bl'], 'wp': info['wp'],
'scale': info['wp'] - info['bl']
})
gr.Success('基于 魔↑术↓技↑巧↓,参数已更新...', duration=2)
# MATLAB格式处理
elif file_path.lower().endswith('.mat'):
with h5py.File(file_path, 'r') as f:
self.raw_data = np.array(f['x']).astype(np.float32) * 959 + 64
# 尝试读取元数据
meta_path = file_path.replace('NOISY', 'METADATA')
if os.path.exists(meta_path):
self.meta = read_metadata(scipy.io.loadmat(meta_path))#scipy.io.loadmat(meta_path)
self.p.update({
'h': self.raw_data.shape[0], 'w': self.raw_data.shape[1],
'bl': 64, 'wp': 1023, 'scale': 959
})
else:
gr.Error("不支持的格式")
raise ValueError("不支持的格式")
# 生成预览图
self.raw_data = self.raw_data.astype(np.float32)
if self.p['clip']: self.raw_data = self.raw_data.clip(self.p['bl'],self.p['wp'])
preview = self._generate_preview()
return preview, self.p['h'], self.p['w'], self.p['bl'], self.p['wp']
except Exception as e:
gr.Error(f"图像可视化失败: {str(e)}")
raise RuntimeError(f"图像处理失败: {str(e)}") from e
def update_image(self, bl, wp, ratio, ispgain):
"""更新图像文件"""
try:
log("更新图像参数...")
gr.Success("更新图像参数...", duration=2)
# 更新处理参数
if ispgain != self.p['ispgain'] and (bl != self.p['bl'] and wp != self.p['wp'] and ratio != self.p['ratio']):
update_image_flag = True
self.update_param('bl', bl)
self.update_param('wp', wp)
self.update_param('ratio', ratio)
self.update_param('ispgain', ispgain)
# 重新初始化
self.denoised_data = None
self.mask_data = None
if self.raw_data is not None:
gr.Success("图像可视化中...", duration=2)
preview = self._generate_preview()
return preview
else:
gr.Error("请先加载图像")
raise RuntimeError("请先加载图像")
except Exception as e:
gr.Error(f"图像更新失败: {str(e)}")
raise RuntimeError(f"图像更新失败: {str(e)}") from e
@spaces.GPU
def estimate_noise(self, double_est, ransac, patch_size):
"""执行噪声估计"""
if not self.yond:
gr.Error("请先加载模型")
raise RuntimeError("请先加载模型")
try:
gr.Warning("正在估计噪声...")
log('开始估计噪声')
self.p['ransac'] = ransac
# 预处理数据
processed = (self.raw_data - self.p['bl']) / self.p['scale']
lr_raw = bayer2rggb(processed) * self.p['ratio']
# 粗估计
reg, self.mask_data = SimpleNLF(
rggb2bayer(lr_raw),
k=19,
eps=1e-3,
setting={'mode': 'self', 'thr_mode':'score2', 'ransac': self.p['ransac']}
)
self.p['gain'] = reg[0] * self.p['scale']
self.p['sigma'] = np.sqrt(max(reg[1], 0)) * self.p['scale']
if double_est:
log(" 使用精估计")
lr_raw_np = lr_raw * self.p['scale']
######## EM-VST矫正VST噪图期望偏差 ########
bias_base = np.maximum(lr_raw_np, 0)
bias = self.bias_lut.get_lut(bias_base, K=self.p['gain'], sigGs=self.p['sigma'])
raw_vst = VST(lr_raw_np, self.p['sigma'], gain=self.p['gain'])
raw_vst = raw_vst - bias
################# VST变换 #################
lower = VST(0, self.p['sigma'], gain=self.p['gain'])
upper = VST(self.p['scale'], self.p['sigma'], gain=self.p['gain'])
nsr = 1 / (upper - lower)
raw_vst = (raw_vst - lower) / (upper - lower)
################# 准备去噪 #################
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.yond.net = self.yond.net.to(self.device)
raw_vst = torch.from_numpy(raw_vst).float().to(self.device).permute(2,0,1)[None,]
if 'guided' in self.yond.arch:
sigma_corr = 1.03
t = torch.tensor(nsr*sigma_corr, dtype=raw_vst.dtype, device=self.device)
# Denoise & pad
target_size = patch_size # 设置目标块大小,可以根据需要调整
overlap_ratio = 1/8 # 设置重叠率,可以根据需要调整
# 使用改进的 big_image_split 函数
raw_inp, metadata = big_image_split(raw_vst, target_size, overlap_ratio)
raw_dn = torch.zeros_like(raw_inp[:,:4])
with torch.no_grad():
for i in range(raw_inp.shape[0]): # 处理所有切块
input_tensor = raw_inp[i][None,].clip(None, 2).to(self.device)
raw_dn[i] = self.yond.net(input_tensor, t).clamp(0,None)
# 使用改进的 big_image_merge 函数
raw_dn = big_image_merge(raw_dn, metadata, blend_mode='avg')
################# VST逆变换 #################
raw_vst = raw_dn[0].permute(1,2,0).detach().cpu().numpy()
raw_vst = raw_vst * (upper - lower) + lower
raw_vst = inverse_VST(raw_vst, self.p['sigma'], gain=self.p['gain']) / self.p['scale']
reg, self.mask_data = SimpleNLF(rggb2bayer(lr_raw), rggb2bayer(raw_vst), k=13,
setting={'mode':'collab', 'thr_mode':'score3', 'ransac': self.p['ransac']})
self.p['gain'] = reg[0] * self.p['scale']
self.p['sigma'] = np.sqrt(max(reg[1], 0)) * self.p['scale']
# 生成可视化结果
mask_img = self._visualize_mask()
log(f"噪声估计完成: gain={self.p['gain']:.2f}, sigma={self.p['sigma']:.2f}")
gr.Success(f"噪声估计完成: gain={self.p['gain']:.2f}, sigma={self.p['sigma']:.2f}", duration=2)
return mask_img, float(f"{self.p['gain']:.2f}"), float(f"{self.p['sigma']:.2f}")
except Exception as e:
gr.Error(f"噪声估计失败: {str(e)}")
raise RuntimeError(f"噪声估计失败: {str(e)}") from e
@spaces.GPU
def enhance_image(self, gain, sigma, sigsnr, ddim_mode, patch_size):
"""执行图像增强"""
if not self.yond:
log('请先加载模型')
raise RuntimeError("请先加载模型")
try:
gr.Warning("正在增强图像...")
log('正在增强图像...')
# 更新处理参数
self.p['ddim_mode'] = ddim_mode
self.update_param('gain', gain)
self.update_param('sigma', sigma)
self.update_param('sigsnr', sigsnr)
# 数据预处理
processed = ((self.raw_data - self.p['bl']) / self.p['scale'])
lr_raw = bayer2rggb(processed) * self.p['ratio']
lr_raw_np = lr_raw * self.p['scale']
bias_base = np.maximum(lr_raw_np, 0)
bias = self.bias_lut.get_lut(bias_base, K=self.p['gain'], sigGs=self.p['sigma'])
raw_vst = VST(lr_raw_np, self.p['sigma'], gain=self.p['gain'])
raw_vst = raw_vst - bias
################# VST变换 #################
lower = VST(0, self.p['sigma'], gain=self.p['gain'])
upper = VST(self.p['scale'], self.p['sigma'], gain=self.p['gain'])
nsr = 1 / (upper - lower)
raw_vst = (raw_vst - lower) / (upper - lower)
################# 准备去噪 #################
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.yond.net = self.yond.net.to(self.device)
raw_vst = torch.from_numpy(raw_vst).float().to(self.device).permute(2,0,1)[None,]
if 'guided' in self.yond.arch:
t = torch.tensor(nsr*self.p['sigsnr'], dtype=raw_vst.dtype, device=self.device)
# Denoise & pad
target_size = patch_size # 设置目标块大小,可以根据需要调整 GPU:1024
overlap_ratio = 1/8 # 设置重叠率,可以根据需要调整
# 使用改进的 big_image_split 函数
raw_inp, metadata = big_image_split(raw_vst, target_size, overlap_ratio)
raw_dn = torch.zeros_like(raw_inp[:,:4])
with torch.no_grad():
if self.p['ddim_mode']:
for i in range(raw_inp.shape[0]): # 处理所有切块
print(f'Patch: {i+1}/{len(raw_dn)}')
raw_dn[i] = ddim(raw_inp[i][None,].clip(None, 2), self.yond.net, t, epoch=self.p['epoch'],
sigma_t=self.p['sigma_t'], eta=self.p['eta_t'], sigma_corr=1.00)
else:
for i in range(raw_inp.shape[0]): # 处理所有切块
input_tensor = raw_inp[i][None,].clip(None, 2)
raw_dn[i] = self.yond.net(input_tensor, t).clamp(0,None)
# 使用改进的 big_image_merge 函数
raw_dn = big_image_merge(raw_dn, metadata, blend_mode='avg')
################# VST逆变换 #################
raw_vst = raw_dn[0].permute(1,2,0).detach().cpu().numpy()
raw_vst = raw_vst * (upper - lower) + lower
self.denoised_data = inverse_VST(raw_vst, self.p['sigma'], gain=self.p['gain']) / self.p['scale']
self.denoised_npy = rggb2bayer(self.denoised_data)
# 保存结果
result = self._generate_result()
log("图像增强完成,请查看结果")
gr.Success("图像增强完成,请查看结果")
return result
except Exception as e:
gr.Error(f"图像增强失败: {str(e)}")
raise RuntimeError(f"增强失败: {str(e)}") from e
# 私有工具方法 ------------------------------------------------------------
def _extract_color_params(self, raw):
"""从RAW文件中提取颜色参数"""
wb = np.array(raw.camera_whitebalance) / raw.camera_whitebalance[1]
ccm = raw.color_matrix[:3, :3].astype(np.float32)
return wb, ccm if ccm[0,0] != 0 else np.eye(3)
def _generate_preview(self):
"""生成预览图像"""
processed = (self.raw_data - self.p['bl']) / self.p['scale']
rgb = FastISP(bayer2rggb(processed)*self.p['ratio']*self.p['ispgain'],
self.p['wb'], self.p['ccm'])
rgb = (rgb.clip(0, 1) * 255).astype(np.uint8)
preview_img = Image.fromarray(rgb)
return preview_img
def _visualize_mask(self):
"""可视化噪声掩模"""
from matplotlib import pyplot as plt
# 检查是否为单通道mask
if self.mask_data.ndim != 2:
gr.Error("Input mask must be a 2D array")
raise ValueError("Input mask must be a 2D array")
# 创建viridis颜色映射的查找表
cmap = plt.cm.viridis
x = np.linspace(0, 1, 256)
lut = (cmap(x)[:, :3] * 255).astype(np.uint8)
# 将mask值缩放到0-255范围并转换为整数索引
mask_indices = (np.clip(self.mask_data, 0, 1) * 255).astype(np.uint8)
# 使用高级索引进行向量化映射
rgb_img = lut[mask_indices]
# 缩放并转换为PIL图像
rgb_img = cv2.resize(rgb_img, (self.p['w'], self.p['h']), interpolation=cv2.INTER_LINEAR)
mask_img = Image.fromarray(rgb_img)
return mask_img
def _generate_result(self):
"""保存最终结果"""
rgb = FastISP(self.denoised_data*self.p['ispgain'],
self.p['wb'],
self.p['ccm'])
self.denoised_rgb = Image.fromarray((rgb.clip(0, 1) * 255).astype(np.uint8))
return self.denoised_rgb
def save_result_npy(self):
"""保存结果到 NPY 文件"""
if self.denoised_npy is None:
gr.Error("请先进行图像增强")
raise RuntimeError("请先进行图像增强")
with tempfile.NamedTemporaryFile(suffix=".npy", delete=False) as tmp_file:
tmp_file_path = tmp_file.name
np.save(tmp_file_path, self.denoised_npy.astype(np.float32))
return tmp_file_path
def save_result_png(self):
"""保存结果到 PNG 文件"""
if self.denoised_npy is None:
gr.Error("请先进行图像增强")
raise RuntimeError("请先进行图像增强")
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file_png:
tmp_file_path_png = tmp_file_png.name
cv2.imwrite(tmp_file_path_png, np.array(self.denoised_rgb)[:,:,::-1])
return tmp_file_path_png
class YONDParser():
def __init__(self, yaml_path="runfiles/Gaussian/gru32n_paper_noclip.yml"):
self.runfile = yaml_path
self.mode = 'eval'
self.debug = False
self.nofig = False
self.nohost = False
self.gpu = 0
class YOND_anytest():
def __init__(self, yaml_path, device):
# 初始化
self.device = device
self.parser = YONDParser(yaml_path)
self.initialization()
def initialization(self):
with open(self.parser.runfile, 'r', encoding="utf-8") as f:
self.args = yaml.load(f.read(), Loader=yaml.FullLoader)
self.mode = self.args['mode'] if self.parser.mode is None else self.parser.mode
if self.parser.debug is True:
self.args['num_workers'] = 0
warnings.warn('You are using debug mode, only main worker(cpu) is used!!!')
if 'clip' not in self.args['dst']:
self.args['dst']['clip'] = False
self.save_plot = False if self.parser.nofig else True
self.args['dst']['mode'] = self.mode
self.hostname, self.hostpath, self.multi_gpu = get_host_with_dir()
self.yond_dir = self.args['checkpoint']
if not self.parser.nohost:
for key in self.args:
if 'dst' in key:
self.args[key]['root_dir'] = f"{self.hostpath}/{self.args[key]['root_dir']}"
self.dst = self.args['dst']
self.arch = self.args['arch']
self.pipe = self.args['pipeline']
if self.pipe['bias_corr'] == 'none':
self.pipe['bias_corr'] = None
self.yond_name = self.args['model_name']
self.method_name = self.args['method_name']
self.fast_ckpt = self.args['fast_ckpt']
self.sample_dir = os.path.join(self.args['result_dir'] ,f"{self.method_name}")
os.makedirs(self.sample_dir, exist_ok=True)
os.makedirs('./logs', exist_ok=True)
#os.makedirs('./metrics', exist_ok=True)
def load_model(self, model_path):
# 模型加载
self.net = globals()[self.arch['name']](self.arch)
model = torch.load(model_path, map_location='cpu')
self.net = load_weights(self.net, model, by_name=False)