File size: 11,703 Bytes
0e07d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import numpy as np
import torch
import torch.distributions as tdist
# from utils import fn_timer


def random_ccm(camera_type='IMX686'):
    """Generates random RGB -> Camera color correction matrices."""
    # Takes a random convex combination of XYZ -> Camera CCMs.
    xyz2cams = [[[1.0234, -0.2969, -0.2266],
               [-0.5625, 1.6328, -0.0469],
               [-0.0703, 0.2188, 0.6406]],
              [[0.4913, -0.0541, -0.0202],
               [-0.613, 1.3513, 0.2906],
               [-0.1564, 0.2151, 0.7183]],
              [[0.838, -0.263, -0.0639],
               [-0.2887, 1.0725, 0.2496],
               [-0.0627, 0.1427, 0.5438]],
              [[0.6596, -0.2079, -0.0562],
               [-0.4782, 1.3016, 0.1933],
               [-0.097, 0.1581, 0.5181]]]
    num_ccms = len(xyz2cams)
    xyz2cams = torch.FloatTensor(xyz2cams)
    weights  = torch.FloatTensor(num_ccms, 1, 1).uniform_(1e-8, 1e8)
    weights_sum = torch.sum(weights, dim=0)
    xyz2cam = torch.sum(xyz2cams * weights, dim=0) / weights_sum

    # Multiplies with RGB -> XYZ to get RGB -> Camera CCM.
    rgb2xyz = torch.FloatTensor([[0.4124564, 0.3575761, 0.1804375],
                               [0.2126729, 0.7151522, 0.0721750],
                               [0.0193339, 0.1191920, 0.9503041]])
    rgb2cam = torch.mm(xyz2cam, rgb2xyz)
    # if camera_type == 'SonyA7S2':
    #     # SonyA7S2 ccm's inv
    #     rgb2cam = [[1.,0.,0.],
    #             [0.,1.,0.],
    #             [0.,0.,1.]]
    # elif camera_type == 'IMX686':
    #     # RedMi K30 ccm's inv
    #     rgb2cam = [[0.61093086,0.31565922,0.07340994],
    #                 [0.09433191,0.7658969,0.1397712 ],
    #                 [0.03532438,0.3020709,0.6626047 ]]
    # rgb2cam = torch.FloatTensor(rgb2cam)

    # Normalizes each row.
    rgb2cam = rgb2cam / torch.sum(rgb2cam, dim=-1, keepdim=True)
    return rgb2cam


def random_gains():
   """Generates random gains for brightening and white balance."""
   # RGB gain represents brightening.
   n        = tdist.Normal(loc=torch.tensor([0.8]), scale=torch.tensor([0.1]))
   rgb_gain = 1.0 / n.sample() if torch.rand(1) < 0.9 else 5 / n.sample()

   # Red and blue gains represent white balance.
   red_gain  =  torch.FloatTensor(1).uniform_(1.4, 2.5)#(1.9, 2.4)
   blue_gain =  torch.FloatTensor(1).uniform_(1.5, 2.4)#(1.5, 1.9)
   return rgb_gain, red_gain, blue_gain

# def random_gains(camera_type='SonyA7S2'):
#     # return torch.FloatTensor(np.array([[1.],[1.],[1.]]))
#     n = tdist.Normal(loc=torch.tensor([0.8]), scale=torch.tensor([0.1]))
#     rgb_gain = 1.0 / n.sample()
#     # SonyA7S2
#     if camera_type == 'SonyA7S2':
#         red_gain = np.random.uniform(1.75, 2.65)
#         ployfit = [14.65 ,-9.63942308, 1.80288462 ]
#         blue_gain= ployfit[0] + ployfit[1] * red_gain + ployfit[2] * red_gain ** 2# + np.random.uniform(0, 0.4)686
#     elif camera_type == 'IMX686':
#         red_gain = np.random.uniform(1.4, 2.3)
#         ployfit = [6.14381188, -3.65620261, 0.70205967]
#         blue_gain= ployfit[0] + ployfit[1] * red_gain + ployfit[2] * red_gain ** 2# + np.random.uniform(0, 0.4)
#     else:
#         raise NotImplementedError
#     red_gain = torch.FloatTensor(np.array([red_gain])).view(1)
#     blue_gain = torch.FloatTensor(np.array([blue_gain])).view(1)
#     return rgb_gain, red_gain, blue_gain

def inverse_smoothstep(image):
    """Approximately inverts a global tone mapping curve."""
    #image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
    image = torch.clamp(image, min=0.0, max=1.0)
    out   = 0.5 - torch.sin(torch.asin(1.0 - 2.0 * image) / 3.0)
    #out   = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
    return out


def gamma_expansion(image):
    """Converts from gamma to linear space."""
    # Clamps to prevent numerical instability of gradients near zero.
    #image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
    out   = torch.clamp(image, min=1e-8) ** 2.2
    #out   = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
    return out


def apply_ccm(image, ccm):
    """Applies a color correction matrix."""
    shape = image.size()
    image = torch.reshape(image, [-1, 3])
    image = torch.tensordot(image, ccm, dims=[[-1], [-1]])
    out   = torch.reshape(image, shape)
    return out


def safe_invert_gains(image, rgb_gain, red_gain, blue_gain, use_gpu=False):
    """Inverts gains while safely handling saturated pixels."""
    # H, W, C
    green = torch.tensor([1.0])
    if use_gpu: green = green.cuda()
    gains = torch.stack((1.0 / red_gain, green, 1.0 / blue_gain)) / rgb_gain
    new_shape = (1,) * (len(image.shape) - 1) + (-1,)
    gains = gains.view(new_shape)
    #gains = gains[None, None, :]
    # Prevents dimming of saturated pixels by smoothly masking gains near white.
    gray  = torch.mean(image, dim=-1, keepdim=True)
    inflection = 0.9
    mask  = (torch.clamp(gray - inflection, min=0.0) / (1.0 - inflection)) ** 2.0

    safe_gains = torch.max(mask + (1.0 - mask) * gains, gains)
    out   = image * safe_gains
    return out

def mosaic(image):
    """Extracts RGGB Bayer planes from an RGB image."""
    if image.size() == 3:
        # image = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
        shape = image.size()
        red   = image[0::2, 0::2, 0]
        green_red  = image[0::2, 1::2, 1]
        green_blue = image[1::2, 0::2, 1]
        blue = image[1::2, 1::2, 2]
        out  = torch.stack((red, green_red, green_blue, blue), dim=-1)
        # out  = torch.reshape(out, (shape[0] // 2, shape[1] // 2, 4))
        # out  = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
    else: # [crops, t, h, w, c]
        shape = image.size()
        red   = image[..., 0::2, 0::2, 0]
        green_red  = image[..., 0::2, 1::2, 1]
        green_blue = image[..., 1::2, 0::2, 1]
        blue = image[..., 1::2, 1::2, 2]
        out  = torch.stack((red, green_red, green_blue, blue), dim=-1)
        # out  = torch.reshape(out, (shape[0], shape[1], shape[-3] // 2, shape[-2] // 2, 4))
        # out  = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
    return out

# def mosaic(image, mode=0):
#     """Extracts Random Bayer planes from an RGB image."""
#     if mode == 0: # RGGB
#         R, Gr, Gb, B = (0,0), (0,1), (1,0), (0,0)
#     elif mode == 1: # GRBG
#         Gr, R, B, Gb = (0,0), (0,1), (1,0), (0,0)
#     elif mode == 2: # GBRG
#         Gb, B, R, Gr = (0,0), (0,1), (1,0), (0,0)
#     elif mode == 3: # BGGR
#         B, Gb, Gr, R = (0,0), (0,1), (1,0), (0,0)
#     shape = image.size()
#     red   = image[..., R[0]::2, R[1]::2, 0]
#     green_red  = image[..., Gr[0]::2, Gr[1]::2, 1]
#     green_blue = image[..., Gb[0]::2, Gb[1]::2, 1]
#     blue = image[..., B[0]::2, B[1]::2, 2]
#     out  = torch.stack((red, green_red, green_blue, blue), dim=-1)
#     # out  = torch.reshape(out, (shape[0], shape[1], shape[-3] // 2, shape[-2] // 2, 4))
#     # out  = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
#     return out

# @ fn_timer
def unprocess(image, lock_wb=False, use_gpu=False, camera_type='IMX686', seed=None):
    """Unprocesses an image from sRGB to realistic raw data."""
    # Randomly creates image metadata.
    rgb2cam = random_ccm()
    cam2rgb = torch.inverse(rgb2cam)
    # rgb_gain, red_gain, blue_gain = random_gains() if lock_wb is False else torch.FloatTensor(np.array([[1.],[2.],[2.]]))
    rgb_gain, red_gain, blue_gain = random_gains() if lock_wb is False else torch.FloatTensor(np.array(lock_wb))
    if use_gpu:
        rgb_gain, red_gain, blue_gain = rgb_gain.cuda(), red_gain.cuda(), blue_gain.cuda()
    if len(image.size()) >= 4:
        res = image.clone()
        for i in range(image.size()[0]):
            temp = image[i]
            temp = inverse_smoothstep(temp)
            temp = gamma_expansion(temp)
            temp = apply_ccm(temp, rgb2cam)
            temp = safe_invert_gains(temp, rgb_gain, red_gain, blue_gain, use_gpu)
            temp = torch.clamp(temp, min=0.0, max=1.0)
            res[i]= temp.clone()
        
        metadata = {
            'cam2rgb': cam2rgb,
            'rgb_gain': rgb_gain,
            'red_gain': red_gain,
            'blue_gain': blue_gain,
        }
        return res, metadata
    else:
        # Approximately inverts global tone mapping.
        image = inverse_smoothstep(image)
        # Inverts gamma compression.
        image = gamma_expansion(image)
        # Inverts color correction.
        image = apply_ccm(image, rgb2cam)
        # Approximately inverts white balance and brightening.
        image = safe_invert_gains(image, rgb_gain, red_gain, blue_gain, use_gpu)
        # Clips saturated pixels.
        image = torch.clamp(image, min=0.0, max=1.0)
        # Applies a Bayer mosaic.
        #image = mosaic(image)

        metadata = {
            'cam2rgb': cam2rgb,
            'rgb_gain': rgb_gain,
            'red_gain': red_gain,
            'blue_gain': blue_gain,
        }
        return image, metadata

def unprocess_rpdc(image, lock_wb=False, use_gpu=False, camera_type='IMX686', known=None):
    """Unprocesses an image from sRGB to realistic raw data."""
    # Randomly creates image metadata.
    if known is not None:
        cam2rgb = known['cam2rgb']
        rgb2cam = known['rgb2cam']
        rgb_gain = known['rgb_gain']
        red_gain = known['red_gain']
        blue_gain = known['blue_gain']
    else:
        rgb2cam = random_ccm()
        cam2rgb = torch.inverse(rgb2cam)
        rgb_gain, red_gain, blue_gain = random_gains() if lock_wb is False else torch.FloatTensor(np.array(lock_wb))

    if use_gpu:
        rgb_gain, red_gain, blue_gain = rgb_gain.cuda(), red_gain.cuda(), blue_gain.cuda()

    res = image.clone()
    for i in range(image.size()[0]):
        temp = image[i]
        temp = inverse_smoothstep(temp)
        temp = gamma_expansion(temp)
        temp = apply_ccm(temp, rgb2cam)
        temp = safe_invert_gains(temp, rgb_gain, red_gain, blue_gain, use_gpu)
        temp = torch.clamp(temp, min=0.0, max=1.0)
        res[i]= temp.clone()
    
    metadata = {
        'rgb2cam': rgb2cam,
        'cam2rgb': cam2rgb,
        'rgb_gain': rgb_gain,
        'red_gain': red_gain,
        'blue_gain': blue_gain,
    }
    return res, metadata
    
def random_noise_levels():
    """Generates random noise levels from a log-log linear distribution."""
    log_min_shot_noise = np.log(0.0001)
    log_max_shot_noise = np.log(0.012)
    log_shot_noise     = torch.FloatTensor(1).uniform_(log_min_shot_noise, log_max_shot_noise)
    shot_noise = torch.exp(log_shot_noise)

    line = lambda x: 2.18 * x + 1.20
    n    = tdist.Normal(loc=torch.tensor([0.0]), scale=torch.tensor([0.26]))
    log_read_noise = line(log_shot_noise) + n.sample()
    read_noise     = torch.exp(log_read_noise)
    return shot_noise, read_noise


def add_noise(image, shot_noise=0.01, read_noise=0.0005):
    """Adds random shot (proportional to image) and read (independent) noise."""
    image    = image.permute(1, 2, 0) # Permute the image tensor to HxWxC format from CxHxW format
    variance = image * shot_noise + read_noise
    n        = tdist.Normal(loc=torch.zeros_like(variance), scale=torch.sqrt(variance))
    noise    = n.sample()
    out      = image + noise
    out      = out.permute(2, 0, 1) # Re-Permute the tensor back to CxHxW format
    return out

if __name__ == '__main__':
    m = tdist.Poisson(torch.tensor([10.,100.,1000.]))
    for i in range(10):
        s = m.sample()
        print(s.numpy())