Spaces:
Sleeping
Sleeping
Commit
·
776b898
1
Parent(s):
176915d
add all
Browse files
app.py
CHANGED
|
@@ -3,32 +3,45 @@ from pydantic import BaseModel
|
|
| 3 |
from typing import Optional
|
| 4 |
import requests
|
| 5 |
import torch
|
| 6 |
-
|
|
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
|
| 9 |
import logging
|
| 10 |
logger = logging.getLogger("app")
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
|
| 13 |
-
#
|
| 14 |
# CONFIG
|
| 15 |
-
#
|
| 16 |
HF_MODEL_REPO = "gaidasalsaa/model-indobertweet-terbaru"
|
| 17 |
BASE_MODEL = "indolem/indobertweet-base-uncased"
|
| 18 |
PT_FILE = "model_indobertweet.pth"
|
| 19 |
|
| 20 |
-
BEARER_TOKEN = "
|
| 21 |
|
| 22 |
-
|
| 23 |
-
#
|
| 24 |
-
#
|
|
|
|
| 25 |
tokenizer = None
|
| 26 |
model = None
|
| 27 |
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
#
|
| 31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def load_model_once():
|
| 33 |
global tokenizer, model
|
| 34 |
|
|
@@ -36,51 +49,37 @@ def load_model_once():
|
|
| 36 |
logger.info("Model already loaded.")
|
| 37 |
return
|
| 38 |
|
| 39 |
-
logger.info("Starting model loading...")
|
| 40 |
-
|
| 41 |
-
device = "cpu"
|
| 42 |
-
logger.info(f"Using device: {device}")
|
| 43 |
-
|
| 44 |
-
# ---- load tokenizer ----
|
| 45 |
logger.info("Loading tokenizer...")
|
| 46 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 47 |
-
logger.info("Tokenizer loaded")
|
| 48 |
|
| 49 |
-
|
| 50 |
-
logger.info("Downloading best_indobertweet.pth...")
|
| 51 |
model_path = hf_hub_download(
|
| 52 |
repo_id=HF_MODEL_REPO,
|
| 53 |
filename=PT_FILE,
|
| 54 |
)
|
| 55 |
-
logger.info(f"Model file downloaded: {model_path}")
|
| 56 |
|
| 57 |
-
logger.info("Loading
|
| 58 |
-
model =
|
| 59 |
BASE_MODEL,
|
| 60 |
-
num_labels=2
|
| 61 |
)
|
| 62 |
|
| 63 |
-
logger.info("Loading
|
| 64 |
state_dict = torch.load(model_path, map_location="cpu")
|
|
|
|
| 65 |
|
| 66 |
-
model.load_state_dict(state_dict, strict=True)
|
| 67 |
-
logger.info("Weights loaded successfully")
|
| 68 |
-
|
| 69 |
-
model.to(device)
|
| 70 |
model.eval()
|
| 71 |
-
|
| 72 |
logger.info("MODEL READY")
|
| 73 |
|
| 74 |
|
| 75 |
-
#
|
| 76 |
# FASTAPI
|
| 77 |
-
#
|
| 78 |
app = FastAPI(title="Stress Detection API")
|
| 79 |
|
| 80 |
|
| 81 |
@app.on_event("startup")
|
| 82 |
def startup_event():
|
| 83 |
-
logger.info("Starting model loading on startup...")
|
| 84 |
load_model_once()
|
| 85 |
|
| 86 |
|
|
@@ -89,61 +88,66 @@ class StressResponse(BaseModel):
|
|
| 89 |
data: Optional[dict] = None
|
| 90 |
|
| 91 |
|
| 92 |
-
#
|
| 93 |
# TWITTER API
|
| 94 |
-
#
|
| 95 |
def get_user_id(username):
|
| 96 |
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 97 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
def fetch_tweets(user_id, limit=25):
|
| 105 |
url = f"https://api.x.com/2/users/{user_id}/tweets"
|
| 106 |
params = {"max_results": limit, "tweet.fields": "id,text,created_at"}
|
| 107 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
|
| 115 |
-
#
|
| 116 |
-
#
|
| 117 |
-
#
|
| 118 |
def extract_keywords(tweets):
|
| 119 |
stress_words = [
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
"bawaannya","marah","tbtb","anjir","cape",
|
| 128 |
-
"panik","enak","kali","pusing","semoga",
|
| 129 |
-
"kadang","langsung","kemarin","tugas",
|
| 130 |
-
"males"
|
| 131 |
]
|
| 132 |
|
| 133 |
found = set()
|
| 134 |
for t in tweets:
|
| 135 |
lower = t.lower()
|
| 136 |
-
for
|
| 137 |
-
if
|
| 138 |
-
found.add(
|
| 139 |
-
|
| 140 |
return list(found)
|
| 141 |
|
| 142 |
|
| 143 |
-
#
|
| 144 |
# INFERENCE
|
| 145 |
-
#
|
| 146 |
def predict_stress(text):
|
|
|
|
|
|
|
| 147 |
inputs = tokenizer(
|
| 148 |
text,
|
| 149 |
return_tensors="pt",
|
|
@@ -156,16 +160,17 @@ def predict_stress(text):
|
|
| 156 |
outputs = model(**inputs)
|
| 157 |
probs = torch.softmax(outputs.logits, dim=1)[0]
|
| 158 |
|
| 159 |
-
label = torch.argmax(probs).item()
|
| 160 |
return label, float(probs[1])
|
| 161 |
|
| 162 |
|
| 163 |
-
#
|
| 164 |
-
#
|
| 165 |
-
#
|
| 166 |
@app.get("/analyze/{username}", response_model=StressResponse)
|
| 167 |
def analyze(username: str):
|
| 168 |
user_id, _ = get_user_id(username)
|
|
|
|
| 169 |
if user_id is None:
|
| 170 |
return StressResponse(message="Failed to fetch profile", data=None)
|
| 171 |
|
|
@@ -174,9 +179,9 @@ def analyze(username: str):
|
|
| 174 |
return StressResponse(message="No tweets available", data=None)
|
| 175 |
|
| 176 |
labels = [predict_stress(t)[0] for t in tweets]
|
| 177 |
-
|
| 178 |
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
|
| 179 |
|
|
|
|
| 180 |
if stress_percentage <= 25:
|
| 181 |
status = 0
|
| 182 |
elif stress_percentage <= 50:
|
|
|
|
| 3 |
from typing import Optional
|
| 4 |
import requests
|
| 5 |
import torch
|
| 6 |
+
import re
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
import logging
|
| 11 |
logger = logging.getLogger("app")
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
|
| 14 |
+
# ===========================
|
| 15 |
# CONFIG
|
| 16 |
+
# ===========================
|
| 17 |
HF_MODEL_REPO = "gaidasalsaa/model-indobertweet-terbaru"
|
| 18 |
BASE_MODEL = "indolem/indobertweet-base-uncased"
|
| 19 |
PT_FILE = "model_indobertweet.pth"
|
| 20 |
|
| 21 |
+
BEARER_TOKEN = "AAAAAAAAAAAAAAAAAAAAADXr5gEAAAAAnQZgkYRrC4iM5WTblBxDyt58oj8%3DriQZkuHuvRL6Suc3rmDhD3umqbHaxwim2Tfb34rfQpnKqf9Xhd"
|
| 22 |
|
| 23 |
+
|
| 24 |
+
# ===========================
|
| 25 |
+
# GLOBAL MODEL
|
| 26 |
+
# ===========================
|
| 27 |
tokenizer = None
|
| 28 |
model = None
|
| 29 |
|
| 30 |
|
| 31 |
+
# ===========================
|
| 32 |
+
# TEXT CLEANING
|
| 33 |
+
# ===========================
|
| 34 |
+
def clean_text(t):
|
| 35 |
+
t = t.lower()
|
| 36 |
+
t = re.sub(r"http\S+|www\.\S+", "", t)
|
| 37 |
+
t = re.sub(r"@\w+", "", t)
|
| 38 |
+
t = re.sub(r"#(\w+)", r"\1", t)
|
| 39 |
+
return t.strip()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# ===========================
|
| 43 |
+
# LOAD MODEL
|
| 44 |
+
# ===========================
|
| 45 |
def load_model_once():
|
| 46 |
global tokenizer, model
|
| 47 |
|
|
|
|
| 49 |
logger.info("Model already loaded.")
|
| 50 |
return
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
logger.info("Loading tokenizer...")
|
| 53 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
|
|
|
| 54 |
|
| 55 |
+
logger.info("Downloading model weights...")
|
|
|
|
| 56 |
model_path = hf_hub_download(
|
| 57 |
repo_id=HF_MODEL_REPO,
|
| 58 |
filename=PT_FILE,
|
| 59 |
)
|
|
|
|
| 60 |
|
| 61 |
+
logger.info("Loading IndoBERTweet architecture...")
|
| 62 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 63 |
BASE_MODEL,
|
| 64 |
+
num_labels=2
|
| 65 |
)
|
| 66 |
|
| 67 |
+
logger.info("Loading state_dict...")
|
| 68 |
state_dict = torch.load(model_path, map_location="cpu")
|
| 69 |
+
model.load_state_dict(state_dict)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
model.eval()
|
|
|
|
| 72 |
logger.info("MODEL READY")
|
| 73 |
|
| 74 |
|
| 75 |
+
# ===========================
|
| 76 |
# FASTAPI
|
| 77 |
+
# ===========================
|
| 78 |
app = FastAPI(title="Stress Detection API")
|
| 79 |
|
| 80 |
|
| 81 |
@app.on_event("startup")
|
| 82 |
def startup_event():
|
|
|
|
| 83 |
load_model_once()
|
| 84 |
|
| 85 |
|
|
|
|
| 88 |
data: Optional[dict] = None
|
| 89 |
|
| 90 |
|
| 91 |
+
# ===========================
|
| 92 |
# TWITTER API
|
| 93 |
+
# ===========================
|
| 94 |
def get_user_id(username):
|
| 95 |
url = f"https://api.x.com/2/users/by/username/{username}"
|
| 96 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
r = requests.get(url, headers=headers, timeout=10)
|
| 100 |
+
if r.status_code != 200:
|
| 101 |
+
return None, r.json()
|
| 102 |
+
return r.json()["data"]["id"], r.json()
|
| 103 |
+
except:
|
| 104 |
+
return None, {"error": "Request failed"}
|
| 105 |
|
| 106 |
|
| 107 |
def fetch_tweets(user_id, limit=25):
|
| 108 |
url = f"https://api.x.com/2/users/{user_id}/tweets"
|
| 109 |
params = {"max_results": limit, "tweet.fields": "id,text,created_at"}
|
| 110 |
headers = {"Authorization": f"Bearer {BEARER_TOKEN}"}
|
| 111 |
+
|
| 112 |
+
try:
|
| 113 |
+
r = requests.get(url, headers=headers, params=params, timeout=10)
|
| 114 |
+
if r.status_code != 200:
|
| 115 |
+
return None, r.json()
|
| 116 |
+
data = r.json().get("data", [])
|
| 117 |
+
return [t["text"] for t in data], r.json()
|
| 118 |
+
except:
|
| 119 |
+
return None, {"error": "Request failed"}
|
| 120 |
|
| 121 |
|
| 122 |
+
# ===========================
|
| 123 |
+
# KEYWORDS
|
| 124 |
+
# ===========================
|
| 125 |
def extract_keywords(tweets):
|
| 126 |
stress_words = [
|
| 127 |
+
"gelisah","cemas","tidur","takut","hati","resah","sampe","tenang",
|
| 128 |
+
"suka","mulu","sedih","ngerasa","gimana","gatau","perasaan",
|
| 129 |
+
"nangis","deg","khawatir","pikiran","harap","gabisa","bener",
|
| 130 |
+
"pengen","sakit","susah","bangun","biar","jam","kaya","bingung",
|
| 131 |
+
"mikir","tuhan","mikirin","bawaannya","marah","tbtb","anjir",
|
| 132 |
+
"cape","panik","enak","kali","pusing","semoga","kadang","langsung",
|
| 133 |
+
"kemarin","tugas","males"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
]
|
| 135 |
|
| 136 |
found = set()
|
| 137 |
for t in tweets:
|
| 138 |
lower = t.lower()
|
| 139 |
+
for w in stress_words:
|
| 140 |
+
if w in lower:
|
| 141 |
+
found.add(w)
|
|
|
|
| 142 |
return list(found)
|
| 143 |
|
| 144 |
|
| 145 |
+
# ===========================
|
| 146 |
# INFERENCE
|
| 147 |
+
# ===========================
|
| 148 |
def predict_stress(text):
|
| 149 |
+
text = clean_text(text)
|
| 150 |
+
|
| 151 |
inputs = tokenizer(
|
| 152 |
text,
|
| 153 |
return_tensors="pt",
|
|
|
|
| 160 |
outputs = model(**inputs)
|
| 161 |
probs = torch.softmax(outputs.logits, dim=1)[0]
|
| 162 |
|
| 163 |
+
label = int(torch.argmax(probs).item())
|
| 164 |
return label, float(probs[1])
|
| 165 |
|
| 166 |
|
| 167 |
+
# ===========================
|
| 168 |
+
# ROUTE
|
| 169 |
+
# ===========================
|
| 170 |
@app.get("/analyze/{username}", response_model=StressResponse)
|
| 171 |
def analyze(username: str):
|
| 172 |
user_id, _ = get_user_id(username)
|
| 173 |
+
|
| 174 |
if user_id is None:
|
| 175 |
return StressResponse(message="Failed to fetch profile", data=None)
|
| 176 |
|
|
|
|
| 179 |
return StressResponse(message="No tweets available", data=None)
|
| 180 |
|
| 181 |
labels = [predict_stress(t)[0] for t in tweets]
|
|
|
|
| 182 |
stress_percentage = round(sum(labels) / len(labels) * 100, 2)
|
| 183 |
|
| 184 |
+
# 4-level status
|
| 185 |
if stress_percentage <= 25:
|
| 186 |
status = 0
|
| 187 |
elif stress_percentage <= 50:
|