File size: 8,301 Bytes
4202f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""Data loading utilities for FBMC forecasting project.

Provides convenient functions to load and filter FBMC data files.
"""

import polars as pl
from pathlib import Path
from typing import Optional, List
from datetime import datetime, timedelta


class FBMCDataLoader:
    """Load and filter FBMC data with convenient methods."""

    def __init__(self, data_dir: Path = Path("data/raw")):
        """Initialize data loader.

        Args:
            data_dir: Directory containing Parquet files (default: data/raw)
        """
        self.data_dir = Path(data_dir)
        if not self.data_dir.exists():
            raise FileNotFoundError(f"Data directory not found: {data_dir}")

    def load_cnecs(
        self,
        start_date: Optional[str] = None,
        end_date: Optional[str] = None,
        borders: Optional[List[str]] = None
    ) -> pl.DataFrame:
        """Load CNEC data with optional filtering.

        Args:
            start_date: Start date (ISO format: 'YYYY-MM-DD')
            end_date: End date (ISO format: 'YYYY-MM-DD')
            borders: List of border codes to filter (e.g., ['DE_NL', 'DE_FR'])

        Returns:
            Polars DataFrame with CNEC data
        """
        file_path = self.data_dir / "cnecs_2024_2025.parquet"
        if not file_path.exists():
            raise FileNotFoundError(f"CNECs file not found: {file_path}")

        cnecs = pl.read_parquet(file_path)

        # Apply date filters
        if start_date:
            cnecs = cnecs.filter(pl.col("timestamp") >= start_date)
        if end_date:
            cnecs = cnecs.filter(pl.col("timestamp") <= end_date)

        # Apply border filter
        if borders:
            cnecs = cnecs.filter(pl.col("border").is_in(borders))

        return cnecs

    def load_weather(
        self,
        start_date: Optional[str] = None,
        end_date: Optional[str] = None,
        grid_points: Optional[List[str]] = None
    ) -> pl.DataFrame:
        """Load weather data with optional filtering.

        Args:
            start_date: Start date (ISO format: 'YYYY-MM-DD')
            end_date: End date (ISO format: 'YYYY-MM-DD')
            grid_points: List of grid point IDs to filter

        Returns:
            Polars DataFrame with weather data
        """
        file_path = self.data_dir / "weather_2024_2025.parquet"
        if not file_path.exists():
            raise FileNotFoundError(f"Weather file not found: {file_path}")

        weather = pl.read_parquet(file_path)

        # Apply date filters
        if start_date:
            weather = weather.filter(pl.col("timestamp") >= start_date)
        if end_date:
            weather = weather.filter(pl.col("timestamp") <= end_date)

        # Apply grid point filter
        if grid_points:
            weather = weather.filter(pl.col("grid_point").is_in(grid_points))

        return weather

    def load_entsoe(
        self,
        start_date: Optional[str] = None,
        end_date: Optional[str] = None,
        zones: Optional[List[str]] = None
    ) -> pl.DataFrame:
        """Load ENTSO-E data with optional filtering.

        Args:
            start_date: Start date (ISO format: 'YYYY-MM-DD')
            end_date: End date (ISO format: 'YYYY-MM-DD')
            zones: List of bidding zone codes (e.g., ['DE_LU', 'FR', 'NL'])

        Returns:
            Polars DataFrame with ENTSO-E data
        """
        file_path = self.data_dir / "entsoe_2024_2025.parquet"
        if not file_path.exists():
            raise FileNotFoundError(f"ENTSO-E file not found: {file_path}")

        entsoe = pl.read_parquet(file_path)

        # Apply date filters
        if start_date:
            entsoe = entsoe.filter(pl.col("timestamp") >= start_date)
        if end_date:
            entsoe = entsoe.filter(pl.col("timestamp") <= end_date)

        # Apply zone filter
        if zones:
            entsoe = entsoe.filter(pl.col("zone").is_in(zones))

        return entsoe

    def get_date_range(self) -> dict:
        """Get available date range from all datasets.

        Returns:
            Dictionary with min/max dates for each dataset
        """
        date_ranges = {}

        try:
            cnecs = pl.read_parquet(self.data_dir / "cnecs_2024_2025.parquet")
            date_ranges['cnecs'] = {
                'min': cnecs['timestamp'].min(),
                'max': cnecs['timestamp'].max()
            }
        except Exception:
            date_ranges['cnecs'] = None

        try:
            weather = pl.read_parquet(self.data_dir / "weather_2024_2025.parquet")
            date_ranges['weather'] = {
                'min': weather['timestamp'].min(),
                'max': weather['timestamp'].max()
            }
        except Exception:
            date_ranges['weather'] = None

        try:
            entsoe = pl.read_parquet(self.data_dir / "entsoe_2024_2025.parquet")
            date_ranges['entsoe'] = {
                'min': entsoe['timestamp'].min(),
                'max': entsoe['timestamp'].max()
            }
        except Exception:
            date_ranges['entsoe'] = None

        return date_ranges

    def validate_data_completeness(
        self,
        start_date: str,
        end_date: str,
        max_missing_pct: float = 5.0
    ) -> dict:
        """Validate data completeness for a given date range.

        Args:
            start_date: Start date (ISO format)
            end_date: End date (ISO format)
            max_missing_pct: Maximum acceptable missing data percentage

        Returns:
            Dictionary with validation results for each dataset
        """
        results = {}

        # Calculate expected number of hours
        start_dt = datetime.fromisoformat(start_date)
        end_dt = datetime.fromisoformat(end_date)
        expected_hours = int((end_dt - start_dt).total_seconds() / 3600)

        # Validate CNECs
        try:
            cnecs = self.load_cnecs(start_date, end_date)
            actual_hours = cnecs.select(pl.col("timestamp").n_unique()).item()
            missing_pct = (1 - actual_hours / expected_hours) * 100

            results['cnecs'] = {
                'expected_hours': expected_hours,
                'actual_hours': actual_hours,
                'missing_pct': missing_pct,
                'valid': missing_pct <= max_missing_pct
            }
        except Exception as e:
            results['cnecs'] = {'error': str(e), 'valid': False}

        # Validate weather
        try:
            weather = self.load_weather(start_date, end_date)
            actual_hours = weather.select(pl.col("timestamp").n_unique()).item()
            missing_pct = (1 - actual_hours / expected_hours) * 100

            results['weather'] = {
                'expected_hours': expected_hours,
                'actual_hours': actual_hours,
                'missing_pct': missing_pct,
                'valid': missing_pct <= max_missing_pct
            }
        except Exception as e:
            results['weather'] = {'error': str(e), 'valid': False}

        # Validate ENTSO-E
        try:
            entsoe = self.load_entsoe(start_date, end_date)
            actual_hours = entsoe.select(pl.col("timestamp").n_unique()).item()
            missing_pct = (1 - actual_hours / expected_hours) * 100

            results['entsoe'] = {
                'expected_hours': expected_hours,
                'actual_hours': actual_hours,
                'missing_pct': missing_pct,
                'valid': missing_pct <= max_missing_pct
            }
        except Exception as e:
            results['entsoe'] = {'error': str(e), 'valid': False}

        return results


# Example usage
if __name__ == "__main__":
    # Initialize loader
    loader = FBMCDataLoader(data_dir=Path("data/raw"))

    # Check available date ranges
    print("Available date ranges:")
    date_ranges = loader.get_date_range()
    for dataset, ranges in date_ranges.items():
        if ranges:
            print(f"  {dataset}: {ranges['min']} to {ranges['max']}")
        else:
            print(f"  {dataset}: Not available")

    # Load specific data
    # cnecs = loader.load_cnecs(start_date="2024-10-01", end_date="2024-10-31")
    # weather = loader.load_weather(start_date="2024-10-01", end_date="2024-10-31")