Spaces:
Sleeping
Sleeping
File size: 18,697 Bytes
12f45c0 069627f 12f45c0 27ce714 e1f5207 12f45c0 c85b8a5 12f45c0 2c1d599 12f45c0 0b4284f 12f45c0 069627f 12f45c0 0b4284f 12f45c0 c8d76da 12f45c0 0b4284f 12f45c0 c8d76da 12f45c0 0b4284f 12f45c0 0b4284f 12f45c0 e5de9d8 0b4284f 12f45c0 572e6a8 12f45c0 e5de9d8 3254242 e5de9d8 3254242 12f45c0 3254242 12f45c0 d080539 12f45c0 069627f 27ce714 069627f 27ce714 12f45c0 dc9b9db b8daa7e e5de9d8 b8daa7e e5de9d8 b8daa7e 0b4284f 12f45c0 0b4284f 12f45c0 0b4284f 069627f 2d135b5 0b4284f 3ac5032 572e6a8 069627f 572e6a8 7a9aff9 40b0931 3ac5032 572e6a8 2d135b5 3ac5032 0b4284f 3ac5032 6fa9b28 0b4284f 3ac5032 7f2c237 3ac5032 0b4284f 3ac5032 0b4284f 3ac5032 0b4284f 069627f 0b4284f dc9b9db 12f45c0 3ac5032 12f45c0 67808ce 12f45c0 7d5b63d 12f45c0 3ac5032 7d5b63d 12f45c0 7d5b63d 12f45c0 7d5b63d cd3a36f 7d5b63d cd3a36f f197da0 7d5b63d cd3a36f 7d5b63d 3f32d3a 12f45c0 7d5b63d 12f45c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
#!/usr/bin/env python3
"""
Chronos-2 Inference Pipeline with Past-Only Covariate Masking
Standalone inference script for HuggingFace Space deployment.
Uses predict_df() API with ALL 2,514 features leveraging Chronos-2's mask-based attention.
FORCE REBUILD: v1.6.0 - Extended context window (2,160 hours = 90 days) optimized for 96GB VRAM
"""
import os
import time
from typing import List, Dict, Optional
from datetime import datetime, timedelta
# CRITICAL: Set PyTorch memory allocator config BEFORE importing torch
# This prevents memory fragmentation issues that cause OOM even with sufficient free memory
# See: https://pytorch.org/docs/stable/notes/cuda.html#environment-variables
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
import polars as pl
import pandas as pd
import numpy as np
import torch
from datasets import load_dataset
from chronos import Chronos2Pipeline
from .dynamic_forecast import DynamicForecast
from .feature_availability import FeatureAvailability
class ChronosInferencePipeline:
"""
Production inference pipeline for Chronos-2 zero-shot forecasting WITH PAST-ONLY MASKING.
Uses predict_df() API with ALL 3,043 features (known-future + past-only covariates).
Past-only covariates (CNEC, volatility, historical flows) are masked in future → model
learns cross-feature correlations from historical context via attention mechanism.
Designed for deployment as API endpoint on HuggingFace Spaces.
"""
def __init__(
self,
model_name: str = "amazon/chronos-2",
device: str = "cuda",
dtype: str = "bfloat16"
):
"""
Initialize inference pipeline.
Args:
model_name: HuggingFace model identifier (chronos-2 supports covariates)
device: Device for inference ('cuda' or 'cpu')
dtype: Data type for model weights (bfloat16 for memory efficiency)
"""
self.model_name = model_name
self.device = device
self.dtype = dtype
# Model loaded on first inference (lazy loading)
self._pipeline = None
self._dataset = None
self._borders = None
def _load_model(self):
"""Load Chronos-2 model (cached after first call)"""
if self._pipeline is None:
print(f"Loading {self.model_name}...")
start_time = time.time()
dtype_map = {
"bfloat16": torch.bfloat16,
"float16": torch.float16,
"float32": torch.float32
}
self._pipeline = Chronos2Pipeline.from_pretrained(
self.model_name,
device_map="auto", # Auto-distribute across all available GPUs
torch_dtype=dtype_map.get(self.dtype, torch.float32)
)
# Set model to evaluation mode (disables dropout, etc.)
self._pipeline.model.eval()
print(f"Model loaded in {time.time() - start_time:.1f}s")
print(f" Device: {next(self._pipeline.model.parameters()).device}")
# GPU detection and memory profiling diagnostics
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
total_vram = sum(torch.cuda.get_device_properties(i).total_memory for i in range(gpu_count))
print(f" [GPU] Detected {gpu_count} GPU(s)")
print(f" [GPU] Total VRAM: {total_vram/1e9:.1f} GB")
print(f" [MEMORY] After model load:")
print(f" GPU memory allocated: {torch.cuda.memory_allocated()/1e9:.2f} GB")
print(f" GPU memory reserved: {torch.cuda.memory_reserved()/1e9:.2f} GB")
return self._pipeline
def _load_dataset(self):
"""Load dataset from HuggingFace (cached after first call)"""
if self._dataset is None:
print("Loading dataset from HuggingFace...")
start_time = time.time()
hf_token = os.getenv("HF_TOKEN")
dataset = load_dataset(
"evgueni-p/fbmc-features-24month",
split="train",
token=hf_token
)
# Convert to Polars
self._dataset = pl.from_arrow(dataset.data.table)
# Extract available borders
target_cols = [col for col in self._dataset.columns if col.startswith('target_border_')]
self._borders = [col.replace('target_border_', '') for col in target_cols]
print(f"Dataset loaded in {time.time() - start_time:.1f}s")
print(f" Shape: {self._dataset.shape}")
print(f" Borders: {len(self._borders)}")
# Memory profiling diagnostics
if torch.cuda.is_available():
print(f" [MEMORY] After dataset load:")
print(f" GPU memory allocated: {torch.cuda.memory_allocated()/1e9:.2f} GB")
print(f" GPU memory reserved: {torch.cuda.memory_reserved()/1e9:.2f} GB")
return self._dataset, self._borders
def run_forecast(
self,
run_date: str,
borders: Optional[List[str]] = None,
forecast_days: int = 7,
context_hours: int = 1125, # 1,125 hours = 46.9 days (1.5 months, fits A100-80GB)
num_samples: int = 20
) -> Dict:
"""
Run zero-shot forecast for specified borders.
Args:
run_date: Forecast run date (YYYY-MM-DD format)
borders: List of borders to forecast (None = all borders)
forecast_days: Forecast horizon in days (7 or 14)
context_hours: Historical context window
num_samples: Number of probabilistic samples
Returns:
Dictionary with forecast results and metadata
"""
# Load model and dataset (cached)
pipeline = self._load_model()
df, all_borders = self._load_dataset()
# Parse run date
run_datetime = datetime.strptime(run_date, "%Y-%m-%d")
run_datetime = run_datetime.replace(hour=23, minute=0)
# Determine borders to forecast
forecast_borders = borders if borders else all_borders
prediction_hours = forecast_days * 24
print(f"\nForecast configuration:")
print(f" Run date: {run_datetime}")
print(f" Borders: {len(forecast_borders)}")
print(f" Forecast horizon: {forecast_days} days ({prediction_hours} hours)")
print(f" Context window: {context_hours} hours")
# Initialize dynamic forecast system
forecaster = DynamicForecast(
dataset=df,
context_hours=context_hours,
forecast_hours=prediction_hours
)
# Run forecasts for each border
results = {
'run_date': run_date,
'forecast_days': forecast_days,
'borders': {},
'metadata': {
'model': self.model_name,
'device': self.device,
'num_samples': num_samples,
'context_hours': context_hours
}
}
total_start = time.time()
# PER-BORDER INFERENCE WITH PAST-ONLY COVARIATE MASKING
# Using predict_df() API with ALL 2,514 features (known-future + past-only masked)
print(f"\n[PAST-ONLY MASKING] Running inference for {len(forecast_borders)} borders with 2,514 features...")
print(f" Known-future: weather, generation, load forecasts (615 features)")
print(f" Past-only masked: CNEC outages, volatility, historical flows (1,899 features)")
for i, border in enumerate(forecast_borders, 1):
# Clear GPU cache BEFORE each border to prevent memory accumulation
# This releases tensors from previous border (no-op on first iteration)
# Does NOT affect model weights (120M params stay loaded)
# Does NOT affect forecast accuracy (each border is independent)
if i > 1: # Skip on first border (clean GPU state)
torch.cuda.empty_cache()
import gc
gc.collect() # Force Python garbage collector to free tensors
border_start = time.time()
print(f"\n [{i}/{len(forecast_borders)}] {border}...", flush=True)
try:
# Extract data WITH covariates
context_data, future_data = forecaster.prepare_forecast_data(
run_date=run_datetime,
border=border
)
print(f" Context shape: {context_data.shape}, Future shape: {future_data.shape}", flush=True)
print(f" Using {len(future_data.columns)-2} features (known-future + past-only masked)", flush=True)
# Run covariate-informed inference using DataFrame API
# Note: predict_df() returns quantiles directly
# Request 9 quantiles to capture learned uncertainty and tail events
# Use torch.inference_mode() to disable gradient tracking (saves ~2-5 GB VRAM)
with torch.inference_mode():
forecasts_df = pipeline.predict_df(
context_data, # Historical data with ALL features
future_df=future_data, # All 3,043 features (past-only masked)
prediction_length=prediction_hours,
id_column='border',
timestamp_column='timestamp',
target='target',
batch_size=32, # Reduced from 64 (41.57GB -> 20.79GB attention tensor to fit single GPU)
quantile_levels=[0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99] # 9 quantiles for volatility
)
# Extract all 9 quantiles from predict_df() output
# predict_df() returns quantiles directly as string columns
if isinstance(forecasts_df, pd.DataFrame):
# Expected columns: '0.01', '0.05', '0.1', '0.25', '0.5', '0.75', '0.9', '0.95', '0.99'
quantile_cols = ['0.01', '0.05', '0.1', '0.25', '0.5', '0.75', '0.9', '0.95', '0.99']
# Extract all quantiles
quantiles = {}
for q in quantile_cols:
if q in forecasts_df.columns:
quantiles[q] = forecasts_df[q].values
else:
# Fallback if quantile missing
if '0.5' in forecasts_df.columns:
quantiles[q] = forecasts_df['0.5'].values # Use median as fallback
elif 'predictions' in forecasts_df.columns:
quantiles[q] = forecasts_df['predictions'].values
else:
raise ValueError(f"Missing quantile {q} and no fallback available. Columns: {forecasts_df.columns.tolist()}")
# Backward compatibility: still extract median, q10, q90
median = quantiles['0.5']
q10 = quantiles['0.1']
q90 = quantiles['0.9']
else:
raise TypeError(f"Expected DataFrame from predict_df(), got {type(forecasts_df)}")
# Round all quantiles to nearest integer (capacity values are always whole MW)
median = np.round(median).astype(int)
q10 = np.round(q10).astype(int)
q90 = np.round(q90).astype(int)
# Round all other quantiles
for q_key in quantiles:
quantiles[q_key] = np.round(quantiles[q_key]).astype(int)
inference_time = time.time() - border_start
# Store results (backward compatible + all quantiles)
results['borders'][border] = {
'median': median.tolist(),
'q10': q10.tolist(),
'q90': q90.tolist(),
# Add all 9 quantiles for adaptive selection
'q01': quantiles['0.01'].tolist(),
'q05': quantiles['0.05'].tolist(),
'q25': quantiles['0.25'].tolist(),
'q75': quantiles['0.75'].tolist(),
'q95': quantiles['0.95'].tolist(),
'q99': quantiles['0.99'].tolist(),
'inference_time_s': inference_time,
'used_covariates': True,
'num_features': len(future_data.columns) - 2 # Exclude border and timestamp
}
print(f" [OK] Complete in {inference_time:.1f}s ({len(future_data.columns)-2} features with past-only masking)", flush=True)
except Exception as e:
import traceback
error_msg = f"{type(e).__name__}: {str(e)}"
traceback_str = traceback.format_exc()
print(f" [ERROR] {error_msg}", flush=True)
print(f"Traceback:\n{traceback_str}", flush=True)
results['borders'][border] = {'error': error_msg, 'traceback': traceback_str}
# Add summary metadata
results['metadata']['total_time_s'] = time.time() - total_start
results['metadata']['successful_borders'] = sum(
1 for b in results['borders'].values() if 'error' not in b
)
print(f"\n{'='*60}")
print(f"FORECAST COMPLETE")
print(f"{'='*60}")
print(f"Total time: {results['metadata']['total_time_s']:.1f}s")
print(f"Successful: {results['metadata']['successful_borders']}/{len(forecast_borders)} borders")
return results
def export_to_parquet(self, results: Dict, output_path: str):
"""
Export forecast results to parquet format.
Args:
results: Forecast results from run_forecast()
output_path: Path to save parquet file
"""
# Create forecast timestamps
run_datetime = datetime.strptime(results['run_date'], "%Y-%m-%d")
forecast_start = run_datetime + timedelta(days=1) # Next day at midnight, not +1 hour
forecast_hours = results['forecast_days'] * 24
timestamps = [
forecast_start + timedelta(hours=h)
for h in range(forecast_hours)
]
# Build DataFrame
data = {'timestamp': timestamps}
successful_borders = []
failed_borders = []
for border, forecast_data in results['borders'].items():
if 'error' not in forecast_data:
data[f'{border}_median'] = forecast_data['median']
data[f'{border}_q10'] = forecast_data['q10']
data[f'{border}_q90'] = forecast_data['q90']
# Add adaptive forecast if available (learned uncertainty-based selection)
if 'adaptive' in forecast_data:
data[f'{border}_adaptive'] = forecast_data['adaptive']
successful_borders.append(border)
else:
failed_borders.append((border, forecast_data['error']))
# Log results
print(f"[EXPORT] Forecast export summary:", flush=True)
print(f" Successful: {len(successful_borders)} borders", flush=True)
print(f" Failed: {len(failed_borders)} borders", flush=True)
if failed_borders:
print(f"[EXPORT] Errors:", flush=True)
for border, error in failed_borders:
print(f" {border}: {error}", flush=True)
df = pl.DataFrame(data)
df.write_parquet(output_path)
print(f"[EXPORT] Exported to: {output_path}", flush=True)
print(f"[EXPORT] Shape: {df.shape}, Columns: {len(df.columns)}", flush=True)
return output_path
# Convenience function for API usage
def run_inference(
run_date: str,
forecast_type: str = "smoke_test",
borders: Optional[List[str]] = None,
output_dir: str = "/tmp"
) -> str:
"""
Run forecast and return path to results file.
Args:
run_date: Forecast run date (YYYY-MM-DD)
forecast_type: 'smoke_test' (7 days, 1 border) or 'full_14day' (14 days, all borders)
borders: Specific borders to forecast (None = use forecast_type defaults)
output_dir: Directory to save results
Returns:
Path to forecast results parquet file
"""
# Initialize pipeline
pipeline = ChronosInferencePipeline()
# Configure based on forecast type
if forecast_type == "smoke_test":
forecast_days = 7
if borders is None:
# Load just to get first border
_, all_borders = pipeline._load_dataset()
borders = [all_borders[0]]
else: # full_14day
forecast_days = 14
# borders = None means all borders
# Run forecast
results = pipeline.run_forecast(
run_date=run_date,
borders=borders,
forecast_days=forecast_days
)
# Write debug file
debug_filename = f"debug_{run_date}_{forecast_type}.txt"
debug_path = os.path.join(output_dir, debug_filename)
with open(debug_path, 'w') as f:
f.write(f"Results summary:\n")
f.write(f" Run date: {results['run_date']}\n")
f.write(f" Forecast days: {results['forecast_days']}\n")
f.write(f" Borders in results: {list(results['borders'].keys())}\n\n")
for border, data in results['borders'].items():
if 'error' in data:
f.write(f" {border}: ERROR - {data['error']}\n")
if 'traceback' in data:
f.write(f"\nFull Traceback:\n{data['traceback']}\n")
else:
f.write(f" {border}: OK\n")
f.write(f" median count: {len(data.get('median', []))}\n")
f.write(f" q10 count: {len(data.get('q10', []))}\n")
f.write(f" q90 count: {len(data.get('q90', []))}\n")
print(f"Debug file written to: {debug_path}", flush=True)
# Export to parquet
output_filename = f"forecast_{run_date}_{forecast_type}.parquet"
output_path = os.path.join(output_dir, output_filename)
pipeline.export_to_parquet(results, output_path)
# Check if forecast has data, if not return debug file
successful_count = sum(1 for data in results['borders'].values() if 'error' not in data)
if successful_count == 0:
print(f"[WARNING] No successful forecasts! Returning debug file instead.", flush=True)
return debug_path
return output_path
|