File size: 36,227 Bytes
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
 
27cb60a
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
 
27cb60a
4202f60
27cb60a
4202f60
 
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
27cb60a
 
 
 
 
4202f60
27cb60a
 
4202f60
27cb60a
 
4202f60
27cb60a
 
 
 
 
4202f60
27cb60a
4202f60
 
 
27cb60a
 
 
4202f60
 
 
 
27cb60a
4202f60
 
27cb60a
4202f60
27cb60a
4202f60
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
27cb60a
4202f60
27cb60a
 
4202f60
27cb60a
4202f60
 
27cb60a
 
 
 
 
 
4202f60
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
27cb60a
 
 
 
 
 
 
 
 
4202f60
 
27cb60a
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
27cb60a
 
 
 
 
 
 
 
 
 
 
4202f60
27cb60a
 
 
 
4202f60
27cb60a
4202f60
27cb60a
 
 
 
 
4202f60
27cb60a
 
 
 
4202f60
 
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
 
 
27cb60a
4202f60
27cb60a
4202f60
27cb60a
 
 
 
 
 
 
 
 
4202f60
 
 
 
27cb60a
 
4202f60
 
27cb60a
4202f60
 
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202f60
27cb60a
 
4202f60
 
27cb60a
 
 
 
 
 
4202f60
27cb60a
4202f60
27cb60a
4202f60
27cb60a
4202f60
 
 
 
 
 
27cb60a
4202f60
27cb60a
 
 
 
 
 
 
 
 
 
4202f60
27cb60a
 
 
 
 
4202f60
 
 
 
 
 
 
 
27cb60a
4202f60
 
 
 
 
 
 
 
 
 
 
 
 
 
27cb60a
4202f60
 
 
 
 
 
 
 
 
 
27cb60a
4202f60
 
27cb60a
 
4202f60
 
 
 
27cb60a
4202f60
27cb60a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
"""JAO FBMC Data Collection using jao-py Python Library

Collects FBMC (Flow-Based Market Coupling) data from JAO Publication Tool.
Uses the jao-py Python package for API access.

Data Available from JaoPublicationToolPandasClient:
- Core FBMC Day-Ahead: From June 9, 2022 onwards

Discovered Methods (17 total):
1. query_maxbex(day) - Maximum Bilateral Exchange (TARGET VARIABLE)
2. query_active_constraints(day) - Active CNECs with shadow prices/RAM
3. query_final_domain(mtu) - Final flowbased domain (PTDFs)
4. query_lta(d_from, d_to) - Long Term Allocations (LTN)
5. query_minmax_np(day) - Min/Max Net Positions
6. query_net_position(day) - Actual net positions
7. query_scheduled_exchange(d_from, d_to) - Scheduled exchanges
8. query_monitoring(day) - Monitoring data (may contain RAM/shadow prices)
9. query_allocationconstraint(d_from, d_to) - Allocation constraints
10. query_alpha_factor(d_from, d_to) - Alpha factors
11. query_d2cf(d_from, d_to) - Day-2 Cross Flow
12. query_initial_domain(mtu) - Initial domain
13. query_prefinal_domain(mtu) - Pre-final domain
14. query_price_spread(d_from, d_to) - Price spreads
15. query_refprog(d_from, d_to) - Reference program
16. query_status(d_from, d_to) - Status information
17. query_validations(d_from, d_to) - Validation data

Documentation: https://github.com/fboerman/jao-py
"""

import polars as pl
from pathlib import Path
from datetime import datetime, timedelta
from typing import Optional, List
from tqdm import tqdm
import pandas as pd

try:
    from jao import JaoPublicationToolPandasClient
except ImportError:
    raise ImportError(
        "jao-py not installed. Install with: uv pip install jao-py"
    )


class JAOCollector:
    """Collect FBMC data using jao-py Python library."""

    def __init__(self):
        """Initialize JAO collector.

        Note: JaoPublicationToolPandasClient() takes no init parameters.
        """
        self.client = JaoPublicationToolPandasClient()
        print("JAO Publication Tool Client initialized")
        print("Data available: Core FBMC from 2022-06-09 onwards")

    def _generate_date_range(
        self,
        start_date: str,
        end_date: str
    ) -> List[datetime]:
        """Generate list of business dates for data collection.

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)

        Returns:
            List of datetime objects
        """
        start_dt = datetime.fromisoformat(start_date)
        end_dt = datetime.fromisoformat(end_date)

        dates = []
        current = start_dt

        while current <= end_dt:
            dates.append(current)
            current += timedelta(days=1)

        return dates

    def collect_maxbex_sample(
        self,
        start_date: str,
        end_date: str,
        output_path: Path
    ) -> Optional[pl.DataFrame]:
        """Collect MaxBEX (Maximum Bilateral Exchange) data - TARGET VARIABLE.

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            output_path: Path to save Parquet file

        Returns:
            Polars DataFrame with MaxBEX data
        """
        import time

        print("=" * 70)
        print("JAO MaxBEX Data Collection (TARGET VARIABLE)")
        print("=" * 70)

        dates = self._generate_date_range(start_date, end_date)
        print(f"Date range: {start_date} to {end_date}")
        print(f"Total dates: {len(dates)}")
        print()

        all_data = []

        for date in tqdm(dates, desc="Collecting MaxBEX"):
            try:
                # Convert to pandas Timestamp with UTC timezone (required by jao-py)
                pd_date = pd.Timestamp(date, tz='UTC')

                # Query MaxBEX data
                df = self.client.query_maxbex(pd_date)

                if df is not None and not df.empty:
                    all_data.append(df)

                # Rate limiting: 5 seconds between requests
                time.sleep(5)

            except Exception as e:
                print(f"  Failed for {date.date()}: {e}")
                continue

        if all_data:
            # Combine all dataframes
            combined_df = pd.concat(all_data, ignore_index=False)

            # Convert to Polars
            pl_df = pl.from_pandas(combined_df)

            # Save to parquet
            output_path.parent.mkdir(parents=True, exist_ok=True)
            pl_df.write_parquet(output_path)

            print()
            print("=" * 70)
            print("MaxBEX Collection Complete")
            print("=" * 70)
            print(f"Total records: {pl_df.shape[0]:,}")
            print(f"Columns: {pl_df.shape[1]}")
            print(f"Output: {output_path}")
            print(f"File size: {output_path.stat().st_size / (1024**2):.1f} MB")

            return pl_df
        else:
            print("No MaxBEX data collected")
            return None

    def collect_cnec_ptdf_sample(
        self,
        start_date: str,
        end_date: str,
        output_path: Path
    ) -> Optional[pl.DataFrame]:
        """Collect Active Constraints (CNECs + PTDFs in ONE call).

        Column Selection Strategy:
        - KEEP (25-26 columns):
          * Identifiers: tso, cnec_name, cnec_eic, direction, cont_name
          * Primary features: fmax, ram, shadow_price
          * PTDFs: ptdf_AT, ptdf_BE, ptdf_CZ, ptdf_DE, ptdf_FR, ptdf_HR,
                   ptdf_HU, ptdf_NL, ptdf_PL, ptdf_RO, ptdf_SI, ptdf_SK
          * Additional features: fuaf, frm, ram_mcp, f0core, imax
          * Metadata: collection_date

        - DISCARD (14-17 columns):
          * Redundant: hubFrom, hubTo (derive during feature engineering)
          * Redundant with fuaf: f0all (r≈0.99)
          * Intermediate: amr, cva, iva, min_ram_factor, max_z2_z_ptdf
          * Empty/separate source: lta_margin (100% zero, get from LTA dataset)
          * Too granular: ftotal_ltn, branch_eic, fref
          * Non-Core FBMC: ptdf_ALBE, ptdf_ALDE

        Data Transformations:
        - Shadow prices: Log transform log(price + 1), round to 2 decimals
        - RAM: Clip to [0, fmax] range
        - PTDFs: Clip to [-1.5, +1.5] range
        - All floats: Round to 2 decimals (storage optimization)

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            output_path: Path to save Parquet file

        Returns:
            Polars DataFrame with CNEC and PTDF data
        """
        import time
        import numpy as np

        print("=" * 70)
        print("JAO Active Constraints Collection (CNECs + PTDFs)")
        print("=" * 70)

        dates = self._generate_date_range(start_date, end_date)
        print(f"Date range: {start_date} to {end_date}")
        print(f"Total dates: {len(dates)}")
        print()

        all_data = []

        for date in tqdm(dates, desc="Collecting CNECs/PTDFs"):
            try:
                # Convert to pandas Timestamp with UTC timezone (required by jao-py)
                pd_date = pd.Timestamp(date, tz='UTC')

                # Query active constraints (includes CNECs + PTDFs!)
                df = self.client.query_active_constraints(pd_date)

                if df is not None and not df.empty:
                    # Add date column for reference
                    df['collection_date'] = date
                    all_data.append(df)

                # Rate limiting: 5 seconds between requests
                time.sleep(5)

            except Exception as e:
                print(f"  Failed for {date.date()}: {e}")
                continue

        if all_data:
            # Combine all dataframes
            combined_df = pd.concat(all_data, ignore_index=True)

            # Convert to Polars for efficient column operations
            pl_df = pl.from_pandas(combined_df)

            # --- DATA CLEANING & TRANSFORMATIONS ---

            # 1. Shadow Price: Log transform + round (NO clipping)
            if 'shadow_price' in pl_df.columns:
                pl_df = pl_df.with_columns([
                    # Keep original rounded to 2 decimals
                    pl.col('shadow_price').round(2).alias('shadow_price'),
                    # Add log-transformed version
                    (pl.col('shadow_price') + 1).log().round(4).alias('shadow_price_log')
                ])
                print("  [OK] Shadow price: log transform applied (no clipping)")

            # 2. RAM: Clip to [0, fmax] and round
            if 'ram' in pl_df.columns and 'fmax' in pl_df.columns:
                pl_df = pl_df.with_columns([
                    pl.when(pl.col('ram') < 0)
                      .then(0)
                      .when(pl.col('ram') > pl.col('fmax'))
                      .then(pl.col('fmax'))
                      .otherwise(pl.col('ram'))
                      .round(2)
                      .alias('ram')
                ])
                print("  [OK] RAM: clipped to [0, fmax] range")

            # 3. PTDFs: Clip to [-1.5, +1.5] and round to 4 decimals (precision needed)
            ptdf_cols = [col for col in pl_df.columns if col.startswith('ptdf_')]
            if ptdf_cols:
                pl_df = pl_df.with_columns([
                    pl.col(col).clip(-1.5, 1.5).round(4).alias(col)
                    for col in ptdf_cols
                ])
                print(f"  [OK] PTDFs: {len(ptdf_cols)} columns clipped to [-1.5, +1.5]")

            # 4. Other float columns: Round to 2 decimals
            float_cols = [col for col in pl_df.columns
                         if pl_df[col].dtype in [pl.Float64, pl.Float32]
                         and col not in ['shadow_price', 'ram'] + ptdf_cols]
            if float_cols:
                pl_df = pl_df.with_columns([
                    pl.col(col).round(2).alias(col)
                    for col in float_cols
                ])
                print(f"  [OK] Other floats: {len(float_cols)} columns rounded to 2 decimals")

            # --- COLUMN SELECTION ---

            # Define columns to keep
            keep_cols = [
                # Identifiers
                'tso', 'cnec_name', 'cnec_eic', 'direction', 'cont_name',
                # Primary features
                'fmax', 'ram', 'shadow_price', 'shadow_price_log',
                # Additional features
                'fuaf', 'frm', 'ram_mcp', 'f0core', 'imax',
                # PTDFs (all Core FBMC zones)
                'ptdf_AT', 'ptdf_BE', 'ptdf_CZ', 'ptdf_DE', 'ptdf_FR', 'ptdf_HR',
                'ptdf_HU', 'ptdf_NL', 'ptdf_PL', 'ptdf_RO', 'ptdf_SI', 'ptdf_SK',
                # Metadata
                'collection_date'
            ]

            # Filter to only columns that exist in the dataframe
            existing_keep_cols = [col for col in keep_cols if col in pl_df.columns]
            discarded_cols = [col for col in pl_df.columns if col not in existing_keep_cols]

            # Select only kept columns
            pl_df = pl_df.select(existing_keep_cols)

            print()
            print(f"  [OK] Column selection: {len(existing_keep_cols)} kept, {len(discarded_cols)} discarded")
            if discarded_cols:
                print(f"    Discarded: {', '.join(sorted(discarded_cols)[:10])}...")

            # Save to parquet
            output_path.parent.mkdir(parents=True, exist_ok=True)
            pl_df.write_parquet(output_path)

            print()
            print("=" * 70)
            print("CNEC/PTDF Collection Complete")
            print("=" * 70)
            print(f"Total records: {pl_df.shape[0]:,}")
            print(f"Columns: {pl_df.shape[1]} ({len(existing_keep_cols)} kept)")
            print(f"CNEC fields: tso, cnec_name, cnec_eic, direction, shadow_price")
            print(f"Features: fmax, ram, fuaf, frm, shadow_price_log")
            print(f"PTDF fields: ptdf_AT, ptdf_BE, ptdf_CZ, ptdf_DE, ptdf_FR, etc.")
            print(f"Output: {output_path}")
            print(f"File size: {output_path.stat().st_size / (1024**2):.2f} MB")

            return pl_df
        else:
            print("No CNEC/PTDF data collected")
            return None

    def collect_lta_sample(
        self,
        start_date: str,
        end_date: str,
        output_path: Path
    ) -> Optional[pl.DataFrame]:
        """Collect LTA (Long Term Allocation) data - separate from CNEC data.

        Note: lta_margin in CNEC data is 100% zero under Extended LTA approach.
        This method collects actual LTA allocations from dedicated LTA publication.

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            output_path: Path to save Parquet file

        Returns:
            Polars DataFrame with LTA data
        """
        import time

        print("=" * 70)
        print("JAO LTA Data Collection (Long Term Allocations)")
        print("=" * 70)

        # LTA query uses date range, not individual days
        print(f"Date range: {start_date} to {end_date}")
        print()

        try:
            # Convert to pandas Timestamps with UTC timezone
            pd_start = pd.Timestamp(start_date, tz='UTC')
            pd_end = pd.Timestamp(end_date, tz='UTC')

            # Query LTA data for the entire period
            print("Querying LTA data...")
            df = self.client.query_lta(pd_start, pd_end)

            if df is not None and not df.empty:
                # Convert to Polars
                pl_df = pl.from_pandas(df)

                # Round float columns to 2 decimals
                float_cols = [col for col in pl_df.columns
                             if pl_df[col].dtype in [pl.Float64, pl.Float32]]
                if float_cols:
                    pl_df = pl_df.with_columns([
                        pl.col(col).round(2).alias(col)
                        for col in float_cols
                    ])

                # Save to parquet
                output_path.parent.mkdir(parents=True, exist_ok=True)
                pl_df.write_parquet(output_path)

                print()
                print("=" * 70)
                print("LTA Collection Complete")
                print("=" * 70)
                print(f"Total records: {pl_df.shape[0]:,}")
                print(f"Columns: {pl_df.shape[1]}")
                print(f"Output: {output_path}")
                print(f"File size: {output_path.stat().st_size / (1024**2):.2f} MB")

                return pl_df
            else:
                print("⚠️  No LTA data available for this period")
                return None

        except Exception as e:
            print(f"❌ LTA collection failed: {e}")
            print("   This may be expected if LTA data is not published for this period")
            return None

    def collect_net_positions_sample(
        self,
        start_date: str,
        end_date: str,
        output_path: Path
    ) -> Optional[pl.DataFrame]:
        """Collect Net Position bounds (Min/Max) for Core FBMC zones.

        Net positions define the domain boundaries for each bidding zone.
        Essential for understanding feasible commercial exchange patterns.

        Implements JAO API rate limiting:
        - 100 requests/minute limit
        - 1 second between requests (60 req/min with safety margin)
        - Exponential backoff on 429 errors

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            output_path: Path to save Parquet file

        Returns:
            Polars DataFrame with net position data
        """
        import time
        from requests.exceptions import HTTPError

        print("=" * 70)
        print("JAO Net Position Data Collection (Min/Max Bounds)")
        print("=" * 70)

        dates = self._generate_date_range(start_date, end_date)
        print(f"Date range: {start_date} to {end_date}")
        print(f"Total dates: {len(dates)}")
        print(f"Rate limiting: 1s between requests, exponential backoff on 429")
        print()

        all_data = []
        failed_dates = []

        for date in tqdm(dates, desc="Collecting Net Positions"):
            # Retry logic with exponential backoff
            max_retries = 5
            base_delay = 60  # Start with 60s on 429 error
            success = False

            for attempt in range(max_retries):
                try:
                    # Rate limiting: 1 second between all requests
                    time.sleep(1)

                    # Convert to pandas Timestamp with UTC timezone
                    pd_date = pd.Timestamp(date, tz='UTC')

                    # Query min/max net positions
                    df = self.client.query_minmax_np(pd_date)

                    if df is not None and not df.empty:
                        # CRITICAL: Reset index to preserve mtu timestamps
                        # Net positions have hourly 'mtu' timestamps in the index
                        df_with_index = df.reset_index()
                        # Add date column for reference
                        df_with_index['collection_date'] = date
                        all_data.append(df_with_index)

                    success = True
                    break  # Success - exit retry loop

                except HTTPError as e:
                    if e.response.status_code == 429:
                        # Rate limited - exponential backoff
                        wait_time = base_delay * (2 ** attempt)
                        if attempt < max_retries - 1:
                            time.sleep(wait_time)
                        else:
                            failed_dates.append((date, "429 after retries"))
                    else:
                        # Other HTTP error - don't retry
                        failed_dates.append((date, str(e)))
                        break

                except Exception as e:
                    # Non-HTTP error
                    failed_dates.append((date, str(e)))
                    break

        # Report results
        print()
        print("=" * 70)
        print("Net Position Collection Complete")
        print("=" * 70)
        print(f"Success: {len(all_data)}/{len(dates)} dates")
        if failed_dates:
            print(f"Failed: {len(failed_dates)} dates")
            if len(failed_dates) <= 10:
                for date, error in failed_dates:
                    print(f"  {date.date()}: {error}")
            else:
                print(f"  First 10 failures:")
                for date, error in failed_dates[:10]:
                    print(f"    {date.date()}: {error}")

        if all_data:
            # Combine all dataframes
            combined_df = pd.concat(all_data, ignore_index=True)

            # Convert to Polars
            pl_df = pl.from_pandas(combined_df)

            # Round float columns to 2 decimals
            float_cols = [col for col in pl_df.columns
                         if pl_df[col].dtype in [pl.Float64, pl.Float32]]
            if float_cols:
                pl_df = pl_df.with_columns([
                    pl.col(col).round(2).alias(col)
                    for col in float_cols
                ])

            # Save to parquet
            output_path.parent.mkdir(parents=True, exist_ok=True)
            pl_df.write_parquet(output_path)

            print()
            print(f"Total records: {pl_df.shape[0]:,}")
            print(f"Columns: {pl_df.shape[1]}")
            print(f"Output: {output_path}")
            print(f"File size: {output_path.stat().st_size / (1024**2):.2f} MB")
            print("=" * 70)

            return pl_df
        else:
            print("\n[WARNING] No Net Position data collected")
            print("=" * 70)
            return None

    def collect_external_atc_sample(
        self,
        start_date: str,
        end_date: str,
        output_path: Path
    ) -> Optional[pl.DataFrame]:
        """Collect ATC (Available Transfer Capacity) for external (non-Core) borders.

        External borders connect Core FBMC to non-Core zones (e.g., FR-UK, DE-CH, PL-SE).
        These capacities affect loop flows and provide context for Core network loading.

        NOTE: This method needs to be implemented once the correct JAO API endpoint
        for external ATC is identified. Possible sources:
        - JAO ATC publications (separate from Core FBMC)
        - ENTSO-E Transparency Platform (Forecasted/Offered Capacity)
        - Bilateral capacity publications

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            output_path: Path to save Parquet file

        Returns:
            Polars DataFrame with external ATC data
        """
        import time

        print("=" * 70)
        print("JAO External ATC Data Collection (Non-Core Borders)")
        print("=" * 70)
        print("[WARN] IMPLEMENTATION PENDING - Need to identify correct API endpoint")
        print()

        # TODO: Research correct JAO API method for external ATC
        # Candidates:
        # 1. JAO ATC-specific publications (if they exist)
        # 2. ENTSO-E Transparency API (Forecasted Transfer Capacities)
        # 3. Bilateral capacity allocations from TSO websites

        # External borders of interest (14 borders × 2 directions = 28):
        # FR-UK, FR-ES, FR-CH, FR-IT
        # DE-CH, DE-DK1, DE-DK2, DE-NO2, DE-SE4
        # PL-SE4, PL-UA
        # CZ-UA
        # RO-UA, RO-MD

        # For now, return None and document that this needs implementation
        print("External ATC collection not yet implemented.")
        print("Potential data sources:")
        print("  1. ENTSO-E Transparency API: Forecasted Transfer Capacities (Day Ahead)")
        print("  2. JAO bilateral capacity publications")
        print("  3. TSO-specific capacity publications")
        print()
        print("Recommendation: Collect from ENTSO-E API for consistency")
        print("=" * 70)

        return None

    def collect_final_domain_dense(
        self,
        start_date: str,
        end_date: str,
        target_cnec_eics: list[str],
        output_path: Path,
        use_mirror: bool = True
    ) -> Optional[pl.DataFrame]:
        """Collect DENSE CNEC time series for specific CNECs from Final Domain.

        Phase 2 collection method: Gets complete hourly time series for target CNECs
        (binding AND non-binding states) to enable time-series feature engineering.

        This method queries the JAO Final Domain publication which contains ALL CNECs
        for each hour (DENSE format), not just active/binding constraints.

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            target_cnec_eics: List of CNEC EIC codes to collect (e.g., 200 critical CNECs from Phase 1)
            output_path: Path to save Parquet file
            use_mirror: Use mirror.flowbased.eu for faster bulk downloads (recommended)

        Returns:
            Polars DataFrame with DENSE CNEC time series data

        Data Structure:
            - DENSE format: Each CNEC appears every hour (binding or not)
            - Columns: mtu (timestamp), tso, cnec_name, cnec_eic, direction, presolved,
                      ram, fmax, shadow_price, frm, fuaf, ptdf_AT, ptdf_BE, ..., ptdf_SK
            - presolved field: True = binding, False = redundant (non-binding)
            - Non-binding hours: shadow_price = 0, ram = fmax

        Notes:
            - Mirror method is MUCH faster: 1 request/day vs 24 requests/day
            - Cannot filter by EIC on server side - downloads all CNECs, then filters locally
            - For 200 CNECs × 24 months: ~3.5M records (~100-150 MB compressed)
        """
        import time

        print("=" * 70)
        print("JAO Final Domain DENSE CNEC Collection (Phase 2)")
        print("=" * 70)
        print(f"Date range: {start_date} to {end_date}")
        print(f"Target CNECs: {len(target_cnec_eics)}")
        print(f"Method: {'Mirror (bulk daily)' if use_mirror else 'Hourly API calls'}")
        print()

        dates = self._generate_date_range(start_date, end_date)
        print(f"Total dates: {len(dates)}")
        print(f"Expected records: {len(target_cnec_eics)} CNECs × {len(dates) * 24} hours = {len(target_cnec_eics) * len(dates) * 24:,}")
        print()

        all_data = []

        for date in tqdm(dates, desc="Collecting Final Domain"):
            try:
                # Convert to pandas Timestamp with UTC timezone
                pd_date = pd.Timestamp(date, tz='Europe/Amsterdam')

                # Query Final Domain for first hour of the day
                # If use_mirror=True, this returns the entire day (24 hours) at once
                df = self.client.query_final_domain(
                    mtu=pd_date,
                    presolved=None,  # ALL CNECs (binding + non-binding) = DENSE!
                    use_mirror=use_mirror
                )

                if df is not None and not df.empty:
                    # Filter to target CNECs only (local filtering)
                    df_filtered = df[df['cnec_eic'].isin(target_cnec_eics)]

                    if not df_filtered.empty:
                        # Add collection date for reference
                        df_filtered['collection_date'] = date
                        all_data.append(df_filtered)

                # Rate limiting for non-mirror mode
                if not use_mirror:
                    time.sleep(1)  # 1 second between requests

            except Exception as e:
                print(f"  Failed for {date.date()}: {e}")
                continue

        if all_data:
            # Combine all dataframes
            combined_df = pd.concat(all_data, ignore_index=True)

            # Convert to Polars
            pl_df = pl.from_pandas(combined_df)

            # Validate DENSE structure
            unique_cnecs = pl_df['cnec_eic'].n_unique()
            unique_hours = pl_df['mtu'].n_unique()
            expected_records = unique_cnecs * unique_hours
            actual_records = len(pl_df)

            print()
            print("=" * 70)
            print("Final Domain DENSE Collection Complete")
            print("=" * 70)
            print(f"Total records: {actual_records:,}")
            print(f"Unique CNECs: {unique_cnecs}")
            print(f"Unique hours: {unique_hours}")
            print(f"Expected (DENSE): {expected_records:,}")

            if actual_records == expected_records:
                print("[OK] DENSE structure validated - all CNECs present every hour")
            else:
                print(f"[WARN] Structure is SPARSE! Missing {expected_records - actual_records:,} records")
                print("       Some CNECs may be missing for some hours")

            # Round float columns to 4 decimals (higher precision for PTDFs)
            float_cols = [col for col in pl_df.columns
                         if pl_df[col].dtype in [pl.Float64, pl.Float32]]
            if float_cols:
                pl_df = pl_df.with_columns([
                    pl.col(col).round(4).alias(col)
                    for col in float_cols
                ])

            # Save to parquet
            output_path.parent.mkdir(parents=True, exist_ok=True)
            pl_df.write_parquet(output_path)

            print(f"Columns: {pl_df.shape[1]}")
            print(f"Output: {output_path}")
            print(f"File size: {output_path.stat().st_size / (1024**2):.2f} MB")
            print("=" * 70)

            return pl_df
        else:
            print("No Final Domain data collected")
            return None

    def collect_cnec_data(
        self,
        start_date: str,
        end_date: str,
        output_path: Path
    ) -> Optional[pl.DataFrame]:
        """Collect CNEC (Critical Network Elements with Contingencies) data.

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            output_path: Path to save Parquet file

        Returns:
            Polars DataFrame with CNEC data
        """
        print("=" * 70)
        print("JAO CNEC Data Collection")
        print("=" * 70)

        dates = self._generate_date_range(start_date, end_date)
        print(f"Date range: {start_date} to {end_date}")
        print(f"Total dates: {len(dates)}")
        print()

        all_data = []

        for date in tqdm(dates, desc="Collecting CNEC data"):
            try:
                # Get CNEC data for this date
                # Note: Exact method name needs to be verified from jao-py source
                df = self.client.query_cnec(date)

                if df is not None and not df.empty:
                    # Add date column
                    df['collection_date'] = date
                    all_data.append(df)

            except Exception as e:
                print(f"  ⚠️  Failed for {date.date()}: {e}")
                continue

        if all_data:
            # Combine all dataframes
            combined_df = pd.concat(all_data, ignore_index=True)

            # Convert to Polars
            pl_df = pl.from_pandas(combined_df)

            # Save to parquet
            output_path.parent.mkdir(parents=True, exist_ok=True)
            pl_df.write_parquet(output_path)

            print()
            print("=" * 70)
            print("CNEC Collection Complete")
            print("=" * 70)
            print(f"Total records: {pl_df.shape[0]:,}")
            print(f"Columns: {pl_df.shape[1]}")
            print(f"Output: {output_path}")
            print(f"File size: {output_path.stat().st_size / (1024**2):.1f} MB")

            return pl_df
        else:
            print("❌ No CNEC data collected")
            return None

    def collect_all_core_data(
        self,
        start_date: str,
        end_date: str,
        output_dir: Path
    ) -> dict:
        """Collect all available Core FBMC data.

        This method will be expanded as we discover available methods in jao-py.

        Args:
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            output_dir: Directory to save Parquet files

        Returns:
            Dictionary with paths to saved files
        """
        output_dir.mkdir(parents=True, exist_ok=True)

        print("=" * 70)
        print("JAO Core FBMC Data Collection")
        print("=" * 70)
        print(f"Date range: {start_date} to {end_date}")
        print(f"Output directory: {output_dir}")
        print()

        results = {}

        # Note: The jao-py documentation is sparse.
        # We'll need to explore the client methods to find what's available.
        # Common methods might include:
        # - query_cnec()
        # - query_ptdf()
        # - query_ram()
        # - query_shadow_prices()
        # - query_net_positions()

        print("⚠️  Note: jao-py has limited documentation.")
        print("   Available methods need to be discovered from source code.")
        print("   See: https://github.com/fboerman/jao-py")
        print()

        # Try to collect CNECs (if method exists)
        try:
            cnec_path = output_dir / "jao_cnec_2024_2025.parquet"
            cnec_df = self.collect_cnec_data(start_date, end_date, cnec_path)
            if cnec_df is not None:
                results['cnec'] = cnec_path
        except AttributeError as e:
            print(f"⚠️  CNEC collection not available: {e}")
            print("   Check jao-py source for correct method names")

        # Placeholder for additional data types
        # These will be implemented as we discover the correct methods

        print()
        print("=" * 70)
        print("JAO Collection Summary")
        print("=" * 70)
        print(f"Files created: {len(results)}")
        for data_type, path in results.items():
            file_size = path.stat().st_size / (1024**2)
            print(f"  - {data_type}: {file_size:.1f} MB")

        if not results:
            print()
            print("⚠️  No data collected. This likely means:")
            print("   1. The date range is outside available data (before 2022-06-09)")
            print("   2. The jao-py methods need to be discovered from source code")
            print("   3. Alternative: Manual download from https://publicationtool.jao.eu/core/")

        return results


def print_jao_manual_instructions():
    """Print manual download instructions for JAO data."""
    print("""
╔══════════════════════════════════════════════════════════════════════════╗
║                    JAO DATA ACCESS INSTRUCTIONS                           ║
╚══════════════════════════════════════════════════════════════════════════╝

Option 1: Use jao-py Python Library (Recommended)
------------------------------------------------
Installed: ✅ jao-py 0.6.2

Available clients:
- JaoPublicationToolPandasClient (Core Day-Ahead, from 2022-06-09)
- JaoPublicationToolPandasIntraDay (Core Intraday, from 2024-05-29)
- JaoPublicationToolPandasNordics (Nordic, from 2024-10-30)

Documentation: https://github.com/fboerman/jao-py

Note: jao-py has sparse documentation. Method discovery required:
1. Explore source code: https://github.com/fboerman/jao-py
2. Check available methods: dir(client)
3. Inspect method signatures: help(client.method_name)

Option 2: Manual Download from JAO Website
-------------------------------------------
1. Visit: https://publicationtool.jao.eu/core/

2. Navigate to data sections:
   - CNECs (Critical Network Elements)
   - PTDFs (Power Transfer Distribution Factors)
   - RAMs (Remaining Available Margins)
   - Shadow Prices
   - Net Positions

3. Select date range: Oct 2024 - Sept 2025

4. Download format: CSV or Excel

5. Save files to: data/raw/

6. File naming convention:
   - jao_cnec_2024-10_2025-09.csv
   - jao_ptdf_2024-10_2025-09.csv
   - jao_ram_2024-10_2025-09.csv

7. Convert to Parquet (we can add converter script if needed)

Option 3: R Package JAOPuTo (Alternative)
------------------------------------------
If you have R installed:

```r
install.packages("devtools")
devtools::install_github("nicoschoutteet/JAOPuTo")

# Then export data to CSV for Python ingestion
```

Option 4: Contact JAO Support
------------------------------
Email: info@jao.eu
Subject: Bulk FBMC data download for research
Request: Core FBMC data, Oct 2024 - Sept 2025

════════════════════════════════════════════════════════════════════════════
    """)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="Collect JAO FBMC data using jao-py")
    parser.add_argument(
        '--start-date',
        default='2024-10-01',
        help='Start date (YYYY-MM-DD)'
    )
    parser.add_argument(
        '--end-date',
        default='2025-09-30',
        help='End date (YYYY-MM-DD)'
    )
    parser.add_argument(
        '--output-dir',
        type=Path,
        default=Path('data/raw'),
        help='Output directory for Parquet files'
    )
    parser.add_argument(
        '--manual-instructions',
        action='store_true',
        help='Print manual download instructions and exit'
    )

    args = parser.parse_args()

    if args.manual_instructions:
        print_jao_manual_instructions()
    else:
        try:
            collector = JAOCollector()
            collector.collect_all_core_data(
                start_date=args.start_date,
                end_date=args.end_date,
                output_dir=args.output_dir
            )
        except Exception as e:
            print(f"\n❌ Error: {e}\n")
            print_jao_manual_instructions()