Commit
·
3aaced5
1
Parent(s):
0425031
Added tests for the train.py module, fixed an error when loading the dataset
Browse files- pyproject.toml +4 -0
- syntetic_issue_report_data_generation/modeling/train.py +189 -169
- tests/test_train.py +892 -0
pyproject.toml
CHANGED
|
@@ -61,3 +61,7 @@ force-sort-within-sections = true
|
|
| 61 |
quote-style = "double"
|
| 62 |
indent-style = "space"
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
quote-style = "double"
|
| 62 |
indent-style = "space"
|
| 63 |
|
| 64 |
+
[tool.pytest.ini_options]
|
| 65 |
+
markers = [
|
| 66 |
+
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
|
| 67 |
+
]
|
syntetic_issue_report_data_generation/modeling/train.py
CHANGED
|
@@ -2,196 +2,215 @@
|
|
| 2 |
import argparse
|
| 3 |
import os
|
| 4 |
import sys
|
| 5 |
-
|
| 6 |
-
import pandas as pd
|
| 7 |
import dagshub
|
| 8 |
-
import mlflow
|
| 9 |
-
from pathlib import Path
|
| 10 |
from datasets import Dataset
|
|
|
|
|
|
|
|
|
|
| 11 |
from sklearn.model_selection import train_test_split
|
| 12 |
-
from sklearn.metrics import classification_report, accuracy_score, f1_score
|
| 13 |
-
|
| 14 |
import torch
|
| 15 |
-
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 16 |
-
print(f"Device: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'}")
|
| 17 |
|
| 18 |
from syntetic_issue_report_data_generation.config import (
|
| 19 |
-
DATASET_CONFIGs,
|
| 20 |
-
MODEL_CONFIGS,
|
| 21 |
-
MLFLOW_TRACKING_URI,
|
| 22 |
MLFLOW_EXPERIMENT_NAME,
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
# Global settings
|
| 30 |
GLOBAL_SEED = 42
|
| 31 |
-
os.environ[
|
|
|
|
| 32 |
|
| 33 |
def init_parser():
|
| 34 |
"""Initialize the argument parser."""
|
| 35 |
parser = argparse.ArgumentParser(description="Train a model for issue classification.")
|
| 36 |
parser.add_argument(
|
| 37 |
-
"--train-dataset",
|
| 38 |
-
type=str,
|
| 39 |
-
required=True,
|
| 40 |
choices=DATASET_CONFIGs.keys(),
|
| 41 |
-
help="Name of the train dataset configuration to use (from config.py)"
|
| 42 |
)
|
| 43 |
parser.add_argument(
|
| 44 |
-
"--test-dataset",
|
| 45 |
-
type=str,
|
| 46 |
required=False,
|
| 47 |
choices=DATASET_CONFIGs.keys(),
|
| 48 |
-
help="Name of the test dataset configuration to use (from config.py). If not provided, will create a holdout split from train data."
|
| 49 |
)
|
| 50 |
parser.add_argument(
|
| 51 |
-
"--model-name",
|
| 52 |
-
type=str,
|
| 53 |
-
required=True,
|
| 54 |
choices=MODEL_CONFIGS.keys(),
|
| 55 |
-
help="Name of the model configuration to use (from config.py)"
|
| 56 |
)
|
| 57 |
parser.add_argument(
|
| 58 |
"--use-setfit",
|
| 59 |
action="store_true",
|
| 60 |
-
help="Use SetFit for training instead of standard transformers"
|
| 61 |
)
|
| 62 |
parser.add_argument(
|
| 63 |
"--test-size",
|
| 64 |
type=float,
|
| 65 |
default=0.2,
|
| 66 |
-
help="Test size for holdout split if test-dataset not provided (default: 0.2)"
|
| 67 |
)
|
| 68 |
parser.add_argument(
|
| 69 |
"--max-train-samples",
|
| 70 |
type=int,
|
| 71 |
-
default=None,
|
| 72 |
-
help="Maximum number of train samples to use for training. Uses stratified sampling if provided."
|
| 73 |
)
|
| 74 |
parser.add_argument(
|
| 75 |
-
"--run-name",
|
| 76 |
-
type=str,
|
| 77 |
-
default=None,
|
| 78 |
-
help="Custom name for the MLflow run"
|
| 79 |
)
|
| 80 |
return parser
|
| 81 |
|
|
|
|
| 82 |
def load_and_prepare_data(train_config, test_config=None, test_size=0.2, max_train_samples=None):
|
| 83 |
"""
|
| 84 |
Load and prepare data from config entries.
|
| 85 |
-
|
| 86 |
Args:
|
| 87 |
train_config: Train dataset configuration dictionary
|
| 88 |
test_config: Optional test dataset configuration dictionary
|
| 89 |
test_size: Size of holdout split if test_config not provided
|
| 90 |
-
max_train_samples: Maximum number of train samples to use
|
| 91 |
"""
|
| 92 |
from sklearn.preprocessing import LabelEncoder
|
| 93 |
-
|
| 94 |
print(f"Loading train data from: {train_config['data_path']}")
|
| 95 |
-
|
| 96 |
# Get train configuration
|
| 97 |
-
train_path = SOFT_CLEANED_DATA_DIR / train_config[
|
| 98 |
-
train_label_col = train_config[
|
| 99 |
-
train_title_col = train_config.get(
|
| 100 |
-
train_body_col = train_config[
|
| 101 |
-
train_sep = train_config.get(
|
| 102 |
|
| 103 |
# Load train data
|
| 104 |
if not train_path.exists():
|
| 105 |
print(f"Error: Train file not found at {train_path}")
|
| 106 |
sys.exit(1)
|
| 107 |
-
|
| 108 |
train_df = pd.read_csv(train_path, sep=train_sep)
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
# Handle test data
|
| 111 |
if test_config:
|
| 112 |
print(f"Loading test data from: {test_config['data_path']}")
|
| 113 |
-
test_path = SOFT_CLEANED_DATA_DIR / test_config[
|
| 114 |
-
test_label_col = test_config[
|
| 115 |
-
test_title_col = test_config.get(
|
| 116 |
-
test_body_col = test_config[
|
| 117 |
-
test_sep = test_config.get(
|
| 118 |
-
|
| 119 |
if not test_path.exists():
|
| 120 |
print(f"Error: Test file not found at {test_path}")
|
| 121 |
sys.exit(1)
|
| 122 |
-
|
| 123 |
test_df = pd.read_csv(test_path, sep=test_sep)
|
|
|
|
| 124 |
evaluation_strategy = "pre-split"
|
| 125 |
-
|
| 126 |
# Create text columns with respective configurations
|
| 127 |
if train_title_col and train_body_col:
|
| 128 |
-
train_df[
|
|
|
|
|
|
|
| 129 |
else:
|
| 130 |
-
train_df[
|
| 131 |
-
|
| 132 |
if test_title_col and test_body_col:
|
| 133 |
-
test_df[
|
|
|
|
|
|
|
| 134 |
else:
|
| 135 |
-
test_df[
|
| 136 |
-
|
| 137 |
# Rename label columns to 'label'
|
| 138 |
train_df = train_df[["text", train_label_col]].rename(columns={train_label_col: "label"})
|
| 139 |
test_df = test_df[["text", test_label_col]].rename(columns={test_label_col: "label"})
|
| 140 |
else:
|
| 141 |
print(f"No test dataset provided. Creating holdout split with test_size={test_size}")
|
| 142 |
-
|
| 143 |
# Create text column
|
| 144 |
if train_title_col and train_body_col:
|
| 145 |
-
train_df[
|
|
|
|
|
|
|
| 146 |
else:
|
| 147 |
-
train_df[
|
| 148 |
-
|
| 149 |
# Select and rename columns
|
| 150 |
train_df = train_df[["text", train_label_col]].rename(columns={train_label_col: "label"})
|
| 151 |
-
|
| 152 |
# Create holdout split
|
| 153 |
train_df, test_df = train_test_split(
|
| 154 |
-
train_df,
|
| 155 |
-
test_size=test_size,
|
| 156 |
-
random_state=GLOBAL_SEED,
|
| 157 |
-
stratify=train_df["label"]
|
| 158 |
)
|
| 159 |
evaluation_strategy = "holdout"
|
| 160 |
|
| 161 |
# Applica il campionamento se max_train_samples è specificato e il dataset è più grande
|
| 162 |
if max_train_samples is not None and len(train_df) > max_train_samples:
|
| 163 |
-
print(
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
# Per garantire il campionamento stratificato, calcoliamo quanti campioni prendere per classe
|
| 166 |
-
num_classes = train_df["label"].nunique()
|
| 167 |
samples_per_class = max_train_samples // num_classes
|
| 168 |
-
|
| 169 |
# Campiona stratificato
|
| 170 |
sampled_train_df_list = []
|
| 171 |
for label_val in train_df["label"].unique():
|
| 172 |
class_subset = train_df[train_df["label"] == label_val]
|
| 173 |
-
sampled_train_df_list.append(
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
# Encode labels to integers
|
| 181 |
label_encoder = LabelEncoder()
|
| 182 |
-
|
| 183 |
# Fit on combined labels to ensure consistency
|
| 184 |
all_labels = pd.concat([train_df["label"], test_df["label"]])
|
| 185 |
label_encoder.fit(all_labels)
|
| 186 |
-
|
| 187 |
# Transform labels
|
| 188 |
train_df["label"] = label_encoder.transform(train_df["label"])
|
| 189 |
test_df["label"] = label_encoder.transform(test_df["label"])
|
| 190 |
-
|
| 191 |
# Log label mapping
|
| 192 |
label_mapping = {str(label): int(idx) for idx, label in enumerate(label_encoder.classes_)}
|
| 193 |
print(f"Label mapping: {label_mapping}")
|
| 194 |
-
|
| 195 |
# Reset index to avoid issues
|
| 196 |
train_df = train_df.reset_index(drop=True)
|
| 197 |
test_df = test_df.reset_index(drop=True)
|
|
@@ -200,66 +219,67 @@ def load_and_prepare_data(train_config, test_config=None, test_size=0.2, max_tra
|
|
| 200 |
train_dataset = Dataset.from_pandas(train_df, preserve_index=False)
|
| 201 |
test_dataset = Dataset.from_pandas(test_df, preserve_index=False)
|
| 202 |
|
| 203 |
-
print(f"Train samples: {len(train_dataset)}, Test samples: {len(test_dataset)}")
|
| 204 |
-
print(f"Train columns: {train_dataset.column_names}")
|
| 205 |
-
print(f"Test columns: {test_dataset.column_names}")
|
| 206 |
print(f"Number of unique labels: {len(label_encoder.classes_)}")
|
| 207 |
-
|
| 208 |
# Store label encoder in the dataset for later use
|
| 209 |
train_dataset.label_encoder = label_encoder
|
| 210 |
test_dataset.label_encoder = label_encoder
|
| 211 |
-
|
| 212 |
return train_dataset, test_dataset, evaluation_strategy
|
| 213 |
|
|
|
|
| 214 |
def train_model_setfit(model_config, train_ds, test_ds):
|
| 215 |
"""Train the model using SetFit."""
|
| 216 |
from setfit import SetFitModel, SetFitTrainer
|
| 217 |
-
|
| 218 |
# 1. Load the pretrained model from Hugging Face
|
| 219 |
print(f"Loading SetFit model: {model_config['model_checkpoint']}")
|
| 220 |
model = SetFitModel.from_pretrained(
|
| 221 |
-
model_config[
|
| 222 |
)
|
| 223 |
|
| 224 |
# 2. Define training arguments
|
| 225 |
-
setfit_params = model_config[
|
| 226 |
|
| 227 |
# 3. Monkey patch per disabilitare i callback problematici
|
| 228 |
import transformers.integrations.integration_utils as integration_utils
|
| 229 |
-
|
| 230 |
# Salva le classi originali
|
| 231 |
original_mlflow_callback = integration_utils.MLflowCallback
|
| 232 |
-
original_dagshub_callback = getattr(integration_utils,
|
| 233 |
-
|
| 234 |
# Sostituisci con mock che non fanno nulla
|
| 235 |
integration_utils.MLflowCallback = lambda: None
|
| 236 |
if original_dagshub_callback:
|
| 237 |
integration_utils.DagsHubCallback = lambda: None
|
| 238 |
-
|
| 239 |
try:
|
| 240 |
# Initialize the Trainer
|
| 241 |
trainer = SetFitTrainer(
|
| 242 |
model=model,
|
| 243 |
train_dataset=train_ds,
|
| 244 |
eval_dataset=test_ds,
|
| 245 |
-
metric="accuracy",
|
| 246 |
**setfit_params,
|
| 247 |
seed=GLOBAL_SEED,
|
| 248 |
)
|
| 249 |
-
|
| 250 |
# IMPORTANTE: Rimuovi i callback problematici dal st_trainer
|
| 251 |
-
if hasattr(trainer,
|
| 252 |
callbacks_to_remove = []
|
| 253 |
for callback in trainer.st_trainer.callback_handler.callbacks:
|
| 254 |
callback_class_name = callback.__class__.__name__
|
| 255 |
# Rimuovi MLflow e DagsHub callbacks
|
| 256 |
-
if
|
| 257 |
callbacks_to_remove.append(callback)
|
| 258 |
-
|
| 259 |
for callback in callbacks_to_remove:
|
| 260 |
print(f"Removing problematic callback: {callback.__class__.__name__}")
|
| 261 |
trainer.st_trainer.callback_handler.remove_callback(callback)
|
| 262 |
-
|
| 263 |
finally:
|
| 264 |
# Ripristina le classi originali
|
| 265 |
integration_utils.MLflowCallback = original_mlflow_callback
|
|
@@ -268,14 +288,16 @@ def train_model_setfit(model_config, train_ds, test_ds):
|
|
| 268 |
|
| 269 |
# 4. Train the model
|
| 270 |
print("Starting SetFit model training...")
|
| 271 |
-
|
| 272 |
# Log parametri manualmente
|
| 273 |
-
mlflow.log_params(
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
| 279 |
trainer.train()
|
| 280 |
print("Training complete.")
|
| 281 |
|
|
@@ -283,67 +305,64 @@ def train_model_setfit(model_config, train_ds, test_ds):
|
|
| 283 |
print("Evaluating model...")
|
| 284 |
metrics = trainer.evaluate()
|
| 285 |
print(f"Metrics: {metrics}")
|
| 286 |
-
|
| 287 |
# Log metriche manualmente
|
| 288 |
mlflow.log_metrics(metrics)
|
| 289 |
|
| 290 |
-
# 6. Get predictions for the classification report
|
| 291 |
y_true = test_ds["label"]
|
| 292 |
y_pred = model.predict(test_ds["text"])
|
| 293 |
|
| 294 |
return model, metrics, y_true, y_pred, "setfit"
|
| 295 |
|
| 296 |
-
|
|
|
|
| 297 |
"""Train the model using standard Transformers Trainer."""
|
|
|
|
| 298 |
from transformers import (
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
Trainer,
|
| 303 |
-
|
| 304 |
)
|
| 305 |
-
|
| 306 |
-
import numpy as np
|
| 307 |
-
|
| 308 |
# 1. Load tokenizer and model
|
| 309 |
print(f"Loading Transformers model: {model_config['model_checkpoint']}")
|
| 310 |
-
tokenizer = AutoTokenizer.from_pretrained(model_config[
|
| 311 |
-
|
| 312 |
# Determine the number of unique labels
|
| 313 |
num_labels = len(set(train_ds["label"]))
|
| 314 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 315 |
-
model_config[
|
| 316 |
-
num_labels=num_labels
|
| 317 |
)
|
| 318 |
-
|
| 319 |
# 2. Tokenize the datasets
|
| 320 |
def tokenize_function(examples):
|
| 321 |
-
return tokenizer(
|
| 322 |
-
|
|
|
|
|
|
|
| 323 |
print("Tokenizing datasets...")
|
| 324 |
-
tokenized_train = train_ds.map(tokenize_function, batched=True, remove_columns=["text"])
|
| 325 |
-
tokenized_test = test_ds.map(tokenize_function, batched=True, remove_columns=["text"])
|
| 326 |
-
|
| 327 |
# 3. Data collator
|
| 328 |
-
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
| 329 |
-
|
| 330 |
# 4. Define evaluation metrics
|
| 331 |
-
def compute_metrics(eval_pred):
|
| 332 |
-
logits, labels = eval_pred
|
| 333 |
predictions = np.argmax(logits, axis=-1)
|
| 334 |
acc = accuracy_score(labels, predictions)
|
| 335 |
-
f1_macro = f1_score(labels, predictions, average=
|
| 336 |
-
f1_weighted = f1_score(labels, predictions, average=
|
| 337 |
-
return {
|
| 338 |
-
|
| 339 |
-
"f1_macro": f1_macro,
|
| 340 |
-
"f1_weighted": f1_weighted
|
| 341 |
-
}
|
| 342 |
-
|
| 343 |
# 5. Training arguments
|
| 344 |
training_args = TrainingArguments(
|
| 345 |
output_dir="./results",
|
| 346 |
-
**model_config[
|
| 347 |
seed=GLOBAL_SEED,
|
| 348 |
eval_strategy="epoch",
|
| 349 |
save_strategy="epoch",
|
|
@@ -351,7 +370,7 @@ def train_model_transformers(model_config, train_ds, test_ds):
|
|
| 351 |
report_to="none", # Disable automatic reporting to avoid conflicts with MLflow
|
| 352 |
push_to_hub=False, # Disable pushing to hub
|
| 353 |
)
|
| 354 |
-
|
| 355 |
# 6. Initialize the Trainer
|
| 356 |
trainer = Trainer(
|
| 357 |
model=model,
|
|
@@ -362,82 +381,83 @@ def train_model_transformers(model_config, train_ds, test_ds):
|
|
| 362 |
data_collator=data_collator,
|
| 363 |
compute_metrics=compute_metrics,
|
| 364 |
)
|
| 365 |
-
|
| 366 |
# 7. Train the model
|
| 367 |
print("Starting Transformers model training...")
|
| 368 |
trainer.train()
|
| 369 |
print("Training complete.")
|
| 370 |
-
|
| 371 |
# 8. Evaluate the model
|
| 372 |
print("Evaluating model...")
|
| 373 |
metrics = trainer.evaluate()
|
| 374 |
print(f"Metrics: {metrics}")
|
| 375 |
-
|
| 376 |
# 9. Log metrics to MLflow manually
|
| 377 |
for key, value in metrics.items():
|
| 378 |
mlflow.log_metric(key, value)
|
| 379 |
-
|
| 380 |
# 10. Get predictions
|
| 381 |
predictions = trainer.predict(tokenized_test)
|
| 382 |
y_pred = np.argmax(predictions.predictions, axis=-1)
|
| 383 |
y_true = tokenized_test["label"]
|
| 384 |
-
|
| 385 |
# 11. Log classification report
|
| 386 |
label_encoder = test_ds.label_encoder
|
| 387 |
target_names = label_encoder.classes_
|
| 388 |
-
|
| 389 |
report = classification_report(y_true, y_pred, target_names=target_names, output_dict=True)
|
| 390 |
print("\nClassification Report:")
|
| 391 |
print(classification_report(y_true, y_pred, target_names=target_names))
|
| 392 |
-
|
| 393 |
# Log per-class metrics to MLflow
|
| 394 |
for label, metrics_dict in report.items():
|
| 395 |
if isinstance(metrics_dict, dict):
|
| 396 |
for metric_name, value in metrics_dict.items():
|
| 397 |
mlflow.log_metric(f"{label}_{metric_name}", value)
|
| 398 |
-
|
| 399 |
# Log label mapping
|
| 400 |
-
mlflow.log_dict(
|
| 401 |
-
|
|
|
|
|
|
|
| 402 |
return (model, tokenizer), metrics, y_true, y_pred, "transformers"
|
| 403 |
|
| 404 |
|
| 405 |
if __name__ == "__main__":
|
| 406 |
args = init_parser().parse_args()
|
| 407 |
-
|
| 408 |
# Get configurations
|
| 409 |
train_config = DATASET_CONFIGs[args.train_dataset]
|
| 410 |
test_config = DATASET_CONFIGs[args.test_dataset] if args.test_dataset else None
|
| 411 |
model_config = MODEL_CONFIGS[args.model_name]
|
| 412 |
-
|
| 413 |
# Load data
|
| 414 |
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 415 |
-
train_config,
|
| 416 |
-
test_config,
|
| 417 |
-
args.test_size,
|
| 418 |
-
max_train_samples=args.max_train_samples
|
| 419 |
)
|
| 420 |
-
|
| 421 |
# Set up MLflow
|
| 422 |
-
dagshub.init(repo_owner=
|
| 423 |
mlflow.set_experiment(MLFLOW_EXPERIMENT_NAME)
|
| 424 |
-
|
| 425 |
# Generate run name
|
| 426 |
run_name = args.run_name or f"{args.model_name}_{args.train_dataset}"
|
| 427 |
if args.test_dataset:
|
| 428 |
run_name += f"_{args.test_dataset}"
|
| 429 |
-
|
| 430 |
# Train model
|
| 431 |
with mlflow.start_run(run_name=run_name):
|
| 432 |
-
mlflow.log_params(
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
|
|
|
|
|
|
| 440 |
if args.use_setfit:
|
| 441 |
train_model_setfit(model_config, train_ds, test_ds)
|
| 442 |
else:
|
| 443 |
-
train_model_transformers(model_config, train_ds, test_ds)
|
|
|
|
| 2 |
import argparse
|
| 3 |
import os
|
| 4 |
import sys
|
| 5 |
+
|
|
|
|
| 6 |
import dagshub
|
|
|
|
|
|
|
| 7 |
from datasets import Dataset
|
| 8 |
+
import mlflow
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from sklearn.metrics import accuracy_score, classification_report, f1_score
|
| 11 |
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
|
| 12 |
import torch
|
|
|
|
|
|
|
| 13 |
|
| 14 |
from syntetic_issue_report_data_generation.config import (
|
|
|
|
|
|
|
|
|
|
| 15 |
MLFLOW_EXPERIMENT_NAME,
|
| 16 |
+
MLFLOW_TRACKING_URI,
|
| 17 |
+
MODEL_CONFIGS,
|
| 18 |
+
SOFT_CLEANED_DATA_DIR,
|
| 19 |
+
DATASET_CONFIGs,
|
| 20 |
)
|
| 21 |
|
| 22 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 23 |
+
print(f"Device: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU'}")
|
| 24 |
|
| 25 |
# Global settings
|
| 26 |
GLOBAL_SEED = 42
|
| 27 |
+
os.environ["MLFLOW_TRACKING_URI"] = MLFLOW_TRACKING_URI
|
| 28 |
+
|
| 29 |
|
| 30 |
def init_parser():
|
| 31 |
"""Initialize the argument parser."""
|
| 32 |
parser = argparse.ArgumentParser(description="Train a model for issue classification.")
|
| 33 |
parser.add_argument(
|
| 34 |
+
"--train-dataset",
|
| 35 |
+
type=str,
|
| 36 |
+
required=True,
|
| 37 |
choices=DATASET_CONFIGs.keys(),
|
| 38 |
+
help="Name of the train dataset configuration to use (from config.py)",
|
| 39 |
)
|
| 40 |
parser.add_argument(
|
| 41 |
+
"--test-dataset",
|
| 42 |
+
type=str,
|
| 43 |
required=False,
|
| 44 |
choices=DATASET_CONFIGs.keys(),
|
| 45 |
+
help="Name of the test dataset configuration to use (from config.py). If not provided, will create a holdout split from train data.",
|
| 46 |
)
|
| 47 |
parser.add_argument(
|
| 48 |
+
"--model-name",
|
| 49 |
+
type=str,
|
| 50 |
+
required=True,
|
| 51 |
choices=MODEL_CONFIGS.keys(),
|
| 52 |
+
help="Name of the model configuration to use (from config.py)",
|
| 53 |
)
|
| 54 |
parser.add_argument(
|
| 55 |
"--use-setfit",
|
| 56 |
action="store_true",
|
| 57 |
+
help="Use SetFit for training instead of standard transformers",
|
| 58 |
)
|
| 59 |
parser.add_argument(
|
| 60 |
"--test-size",
|
| 61 |
type=float,
|
| 62 |
default=0.2,
|
| 63 |
+
help="Test size for holdout split if test-dataset not provided (default: 0.2)",
|
| 64 |
)
|
| 65 |
parser.add_argument(
|
| 66 |
"--max-train-samples",
|
| 67 |
type=int,
|
| 68 |
+
default=None,
|
| 69 |
+
help="Maximum number of train samples to use for training. Uses stratified sampling if provided.",
|
| 70 |
)
|
| 71 |
parser.add_argument(
|
| 72 |
+
"--run-name", type=str, default=None, help="Custom name for the MLflow run"
|
|
|
|
|
|
|
|
|
|
| 73 |
)
|
| 74 |
return parser
|
| 75 |
|
| 76 |
+
|
| 77 |
def load_and_prepare_data(train_config, test_config=None, test_size=0.2, max_train_samples=None):
|
| 78 |
"""
|
| 79 |
Load and prepare data from config entries.
|
| 80 |
+
|
| 81 |
Args:
|
| 82 |
train_config: Train dataset configuration dictionary
|
| 83 |
test_config: Optional test dataset configuration dictionary
|
| 84 |
test_size: Size of holdout split if test_config not provided
|
| 85 |
+
max_train_samples: Maximum number of train samples to use
|
| 86 |
"""
|
| 87 |
from sklearn.preprocessing import LabelEncoder
|
| 88 |
+
|
| 89 |
print(f"Loading train data from: {train_config['data_path']}")
|
| 90 |
+
|
| 91 |
# Get train configuration
|
| 92 |
+
train_path = SOFT_CLEANED_DATA_DIR / train_config["data_path"]
|
| 93 |
+
train_label_col = train_config["label_col"]
|
| 94 |
+
train_title_col = train_config.get("title_col")
|
| 95 |
+
train_body_col = train_config["body_col"]
|
| 96 |
+
train_sep = train_config.get("sep", ",")
|
| 97 |
|
| 98 |
# Load train data
|
| 99 |
if not train_path.exists():
|
| 100 |
print(f"Error: Train file not found at {train_path}")
|
| 101 |
sys.exit(1)
|
| 102 |
+
|
| 103 |
train_df = pd.read_csv(train_path, sep=train_sep)
|
| 104 |
+
|
| 105 |
+
# Validate required columns exist in train data
|
| 106 |
+
required_columns = [train_label_col, train_body_col]
|
| 107 |
+
if train_title_col:
|
| 108 |
+
required_columns.append(train_title_col)
|
| 109 |
+
|
| 110 |
+
missing_columns = [col for col in required_columns if col not in train_df.columns]
|
| 111 |
+
if missing_columns:
|
| 112 |
+
print(
|
| 113 |
+
f"Error: Required columns {missing_columns} not found in train dataset. Available columns: {list(train_df.columns)}"
|
| 114 |
+
)
|
| 115 |
+
sys.exit(1)
|
| 116 |
+
|
| 117 |
# Handle test data
|
| 118 |
if test_config:
|
| 119 |
print(f"Loading test data from: {test_config['data_path']}")
|
| 120 |
+
test_path = SOFT_CLEANED_DATA_DIR / test_config["data_path"]
|
| 121 |
+
test_label_col = test_config["label_col"]
|
| 122 |
+
test_title_col = test_config.get("title_col")
|
| 123 |
+
test_body_col = test_config["body_col"]
|
| 124 |
+
test_sep = test_config.get("sep", ",")
|
| 125 |
+
|
| 126 |
if not test_path.exists():
|
| 127 |
print(f"Error: Test file not found at {test_path}")
|
| 128 |
sys.exit(1)
|
| 129 |
+
|
| 130 |
test_df = pd.read_csv(test_path, sep=test_sep)
|
| 131 |
+
|
| 132 |
evaluation_strategy = "pre-split"
|
| 133 |
+
|
| 134 |
# Create text columns with respective configurations
|
| 135 |
if train_title_col and train_body_col:
|
| 136 |
+
train_df["text"] = (
|
| 137 |
+
train_df[train_title_col].fillna("") + " " + train_df[train_body_col].fillna("")
|
| 138 |
+
)
|
| 139 |
else:
|
| 140 |
+
train_df["text"] = train_df[train_body_col].fillna("")
|
| 141 |
+
|
| 142 |
if test_title_col and test_body_col:
|
| 143 |
+
test_df["text"] = (
|
| 144 |
+
test_df[test_title_col].fillna("") + " " + test_df[test_body_col].fillna("")
|
| 145 |
+
)
|
| 146 |
else:
|
| 147 |
+
test_df["text"] = test_df[test_body_col].fillna("")
|
| 148 |
+
|
| 149 |
# Rename label columns to 'label'
|
| 150 |
train_df = train_df[["text", train_label_col]].rename(columns={train_label_col: "label"})
|
| 151 |
test_df = test_df[["text", test_label_col]].rename(columns={test_label_col: "label"})
|
| 152 |
else:
|
| 153 |
print(f"No test dataset provided. Creating holdout split with test_size={test_size}")
|
| 154 |
+
|
| 155 |
# Create text column
|
| 156 |
if train_title_col and train_body_col:
|
| 157 |
+
train_df["text"] = (
|
| 158 |
+
train_df[train_title_col].fillna("") + " " + train_df[train_body_col].fillna("")
|
| 159 |
+
)
|
| 160 |
else:
|
| 161 |
+
train_df["text"] = train_df[train_body_col].fillna("")
|
| 162 |
+
|
| 163 |
# Select and rename columns
|
| 164 |
train_df = train_df[["text", train_label_col]].rename(columns={train_label_col: "label"})
|
| 165 |
+
|
| 166 |
# Create holdout split
|
| 167 |
train_df, test_df = train_test_split(
|
| 168 |
+
train_df, test_size=test_size, random_state=GLOBAL_SEED, stratify=train_df["label"]
|
|
|
|
|
|
|
|
|
|
| 169 |
)
|
| 170 |
evaluation_strategy = "holdout"
|
| 171 |
|
| 172 |
# Applica il campionamento se max_train_samples è specificato e il dataset è più grande
|
| 173 |
if max_train_samples is not None and len(train_df) > max_train_samples:
|
| 174 |
+
print(
|
| 175 |
+
f"Sampling {max_train_samples} samples from the training set (original size: {len(train_df)})."
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
# Per garantire il campionamento stratificato, calcoliamo quanti campioni prendere per classe
|
| 179 |
+
num_classes = train_df["label"].nunique() # Numero di classi univoche
|
| 180 |
samples_per_class = max_train_samples // num_classes
|
| 181 |
+
|
| 182 |
# Campiona stratificato
|
| 183 |
sampled_train_df_list = []
|
| 184 |
for label_val in train_df["label"].unique():
|
| 185 |
class_subset = train_df[train_df["label"] == label_val]
|
| 186 |
+
sampled_train_df_list.append(
|
| 187 |
+
class_subset.sample(
|
| 188 |
+
n=min(len(class_subset), samples_per_class), random_state=GLOBAL_SEED
|
| 189 |
+
)
|
| 190 |
+
)
|
| 191 |
|
| 192 |
+
train_df = (
|
| 193 |
+
pd.concat(sampled_train_df_list)
|
| 194 |
+
.sample(frac=1, random_state=GLOBAL_SEED)
|
| 195 |
+
.reset_index(drop=True)
|
| 196 |
+
) # Ricombina e mescola
|
| 197 |
+
print(f"New train samples after stratified sampling: {len(train_df)}")
|
| 198 |
|
| 199 |
# Encode labels to integers
|
| 200 |
label_encoder = LabelEncoder()
|
| 201 |
+
|
| 202 |
# Fit on combined labels to ensure consistency
|
| 203 |
all_labels = pd.concat([train_df["label"], test_df["label"]])
|
| 204 |
label_encoder.fit(all_labels)
|
| 205 |
+
|
| 206 |
# Transform labels
|
| 207 |
train_df["label"] = label_encoder.transform(train_df["label"])
|
| 208 |
test_df["label"] = label_encoder.transform(test_df["label"])
|
| 209 |
+
|
| 210 |
# Log label mapping
|
| 211 |
label_mapping = {str(label): int(idx) for idx, label in enumerate(label_encoder.classes_)}
|
| 212 |
print(f"Label mapping: {label_mapping}")
|
| 213 |
+
|
| 214 |
# Reset index to avoid issues
|
| 215 |
train_df = train_df.reset_index(drop=True)
|
| 216 |
test_df = test_df.reset_index(drop=True)
|
|
|
|
| 219 |
train_dataset = Dataset.from_pandas(train_df, preserve_index=False)
|
| 220 |
test_dataset = Dataset.from_pandas(test_df, preserve_index=False)
|
| 221 |
|
| 222 |
+
print(f"Train samples: {len(train_dataset)}, Test samples: {len(test_dataset)}")
|
| 223 |
+
print(f"Train columns: {train_dataset.column_names}")
|
| 224 |
+
print(f"Test columns: {test_dataset.column_names}")
|
| 225 |
print(f"Number of unique labels: {len(label_encoder.classes_)}")
|
| 226 |
+
|
| 227 |
# Store label encoder in the dataset for later use
|
| 228 |
train_dataset.label_encoder = label_encoder
|
| 229 |
test_dataset.label_encoder = label_encoder
|
| 230 |
+
|
| 231 |
return train_dataset, test_dataset, evaluation_strategy
|
| 232 |
|
| 233 |
+
|
| 234 |
def train_model_setfit(model_config, train_ds, test_ds):
|
| 235 |
"""Train the model using SetFit."""
|
| 236 |
from setfit import SetFitModel, SetFitTrainer
|
| 237 |
+
|
| 238 |
# 1. Load the pretrained model from Hugging Face
|
| 239 |
print(f"Loading SetFit model: {model_config['model_checkpoint']}")
|
| 240 |
model = SetFitModel.from_pretrained(
|
| 241 |
+
model_config["model_checkpoint"],
|
| 242 |
)
|
| 243 |
|
| 244 |
# 2. Define training arguments
|
| 245 |
+
setfit_params = model_config["params"]
|
| 246 |
|
| 247 |
# 3. Monkey patch per disabilitare i callback problematici
|
| 248 |
import transformers.integrations.integration_utils as integration_utils
|
| 249 |
+
|
| 250 |
# Salva le classi originali
|
| 251 |
original_mlflow_callback = integration_utils.MLflowCallback
|
| 252 |
+
original_dagshub_callback = getattr(integration_utils, "DagsHubCallback", None)
|
| 253 |
+
|
| 254 |
# Sostituisci con mock che non fanno nulla
|
| 255 |
integration_utils.MLflowCallback = lambda: None
|
| 256 |
if original_dagshub_callback:
|
| 257 |
integration_utils.DagsHubCallback = lambda: None
|
| 258 |
+
|
| 259 |
try:
|
| 260 |
# Initialize the Trainer
|
| 261 |
trainer = SetFitTrainer(
|
| 262 |
model=model,
|
| 263 |
train_dataset=train_ds,
|
| 264 |
eval_dataset=test_ds,
|
| 265 |
+
metric="accuracy",
|
| 266 |
**setfit_params,
|
| 267 |
seed=GLOBAL_SEED,
|
| 268 |
)
|
| 269 |
+
|
| 270 |
# IMPORTANTE: Rimuovi i callback problematici dal st_trainer
|
| 271 |
+
if hasattr(trainer, "st_trainer") and trainer.st_trainer is not None:
|
| 272 |
callbacks_to_remove = []
|
| 273 |
for callback in trainer.st_trainer.callback_handler.callbacks:
|
| 274 |
callback_class_name = callback.__class__.__name__
|
| 275 |
# Rimuovi MLflow e DagsHub callbacks
|
| 276 |
+
if "MLflow" in callback_class_name or "DagsHub" in callback_class_name:
|
| 277 |
callbacks_to_remove.append(callback)
|
| 278 |
+
|
| 279 |
for callback in callbacks_to_remove:
|
| 280 |
print(f"Removing problematic callback: {callback.__class__.__name__}")
|
| 281 |
trainer.st_trainer.callback_handler.remove_callback(callback)
|
| 282 |
+
|
| 283 |
finally:
|
| 284 |
# Ripristina le classi originali
|
| 285 |
integration_utils.MLflowCallback = original_mlflow_callback
|
|
|
|
| 288 |
|
| 289 |
# 4. Train the model
|
| 290 |
print("Starting SetFit model training...")
|
| 291 |
+
|
| 292 |
# Log parametri manualmente
|
| 293 |
+
mlflow.log_params(
|
| 294 |
+
{
|
| 295 |
+
"model_checkpoint": model_config["model_checkpoint"],
|
| 296 |
+
**setfit_params,
|
| 297 |
+
"seed": GLOBAL_SEED,
|
| 298 |
+
}
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
trainer.train()
|
| 302 |
print("Training complete.")
|
| 303 |
|
|
|
|
| 305 |
print("Evaluating model...")
|
| 306 |
metrics = trainer.evaluate()
|
| 307 |
print(f"Metrics: {metrics}")
|
| 308 |
+
|
| 309 |
# Log metriche manualmente
|
| 310 |
mlflow.log_metrics(metrics)
|
| 311 |
|
| 312 |
+
# 6. Get predictions for the classification report
|
| 313 |
y_true = test_ds["label"]
|
| 314 |
y_pred = model.predict(test_ds["text"])
|
| 315 |
|
| 316 |
return model, metrics, y_true, y_pred, "setfit"
|
| 317 |
|
| 318 |
+
|
| 319 |
+
def train_model_transformers(model_config, train_ds, test_ds):
|
| 320 |
"""Train the model using standard Transformers Trainer."""
|
| 321 |
+
import numpy as np
|
| 322 |
from transformers import (
|
| 323 |
+
AutoModelForSequenceClassification,
|
| 324 |
+
AutoTokenizer,
|
| 325 |
+
DataCollatorWithPadding,
|
| 326 |
Trainer,
|
| 327 |
+
TrainingArguments,
|
| 328 |
)
|
| 329 |
+
|
|
|
|
|
|
|
| 330 |
# 1. Load tokenizer and model
|
| 331 |
print(f"Loading Transformers model: {model_config['model_checkpoint']}")
|
| 332 |
+
tokenizer = AutoTokenizer.from_pretrained(model_config["model_checkpoint"])
|
| 333 |
+
|
| 334 |
# Determine the number of unique labels
|
| 335 |
num_labels = len(set(train_ds["label"]))
|
| 336 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 337 |
+
model_config["model_checkpoint"], num_labels=num_labels
|
|
|
|
| 338 |
)
|
| 339 |
+
|
| 340 |
# 2. Tokenize the datasets
|
| 341 |
def tokenize_function(examples):
|
| 342 |
+
return tokenizer(
|
| 343 |
+
examples["text"], truncation=True, max_length=256, padding=False
|
| 344 |
+
) # prova anche con 256
|
| 345 |
+
|
| 346 |
print("Tokenizing datasets...")
|
| 347 |
+
tokenized_train = train_ds.map(tokenize_function, batched=True, remove_columns=["text"])
|
| 348 |
+
tokenized_test = test_ds.map(tokenize_function, batched=True, remove_columns=["text"])
|
| 349 |
+
|
| 350 |
# 3. Data collator
|
| 351 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
| 352 |
+
|
| 353 |
# 4. Define evaluation metrics
|
| 354 |
+
def compute_metrics(eval_pred):
|
| 355 |
+
logits, labels = eval_pred
|
| 356 |
predictions = np.argmax(logits, axis=-1)
|
| 357 |
acc = accuracy_score(labels, predictions)
|
| 358 |
+
f1_macro = f1_score(labels, predictions, average="macro")
|
| 359 |
+
f1_weighted = f1_score(labels, predictions, average="weighted")
|
| 360 |
+
return {"accuracy": acc, "f1_macro": f1_macro, "f1_weighted": f1_weighted}
|
| 361 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
# 5. Training arguments
|
| 363 |
training_args = TrainingArguments(
|
| 364 |
output_dir="./results",
|
| 365 |
+
**model_config["params"],
|
| 366 |
seed=GLOBAL_SEED,
|
| 367 |
eval_strategy="epoch",
|
| 368 |
save_strategy="epoch",
|
|
|
|
| 370 |
report_to="none", # Disable automatic reporting to avoid conflicts with MLflow
|
| 371 |
push_to_hub=False, # Disable pushing to hub
|
| 372 |
)
|
| 373 |
+
|
| 374 |
# 6. Initialize the Trainer
|
| 375 |
trainer = Trainer(
|
| 376 |
model=model,
|
|
|
|
| 381 |
data_collator=data_collator,
|
| 382 |
compute_metrics=compute_metrics,
|
| 383 |
)
|
| 384 |
+
|
| 385 |
# 7. Train the model
|
| 386 |
print("Starting Transformers model training...")
|
| 387 |
trainer.train()
|
| 388 |
print("Training complete.")
|
| 389 |
+
|
| 390 |
# 8. Evaluate the model
|
| 391 |
print("Evaluating model...")
|
| 392 |
metrics = trainer.evaluate()
|
| 393 |
print(f"Metrics: {metrics}")
|
| 394 |
+
|
| 395 |
# 9. Log metrics to MLflow manually
|
| 396 |
for key, value in metrics.items():
|
| 397 |
mlflow.log_metric(key, value)
|
| 398 |
+
|
| 399 |
# 10. Get predictions
|
| 400 |
predictions = trainer.predict(tokenized_test)
|
| 401 |
y_pred = np.argmax(predictions.predictions, axis=-1)
|
| 402 |
y_true = tokenized_test["label"]
|
| 403 |
+
|
| 404 |
# 11. Log classification report
|
| 405 |
label_encoder = test_ds.label_encoder
|
| 406 |
target_names = label_encoder.classes_
|
| 407 |
+
|
| 408 |
report = classification_report(y_true, y_pred, target_names=target_names, output_dict=True)
|
| 409 |
print("\nClassification Report:")
|
| 410 |
print(classification_report(y_true, y_pred, target_names=target_names))
|
| 411 |
+
|
| 412 |
# Log per-class metrics to MLflow
|
| 413 |
for label, metrics_dict in report.items():
|
| 414 |
if isinstance(metrics_dict, dict):
|
| 415 |
for metric_name, value in metrics_dict.items():
|
| 416 |
mlflow.log_metric(f"{label}_{metric_name}", value)
|
| 417 |
+
|
| 418 |
# Log label mapping
|
| 419 |
+
mlflow.log_dict(
|
| 420 |
+
{str(k): v for k, v in enumerate(label_encoder.classes_)}, "label_mapping.json"
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
return (model, tokenizer), metrics, y_true, y_pred, "transformers"
|
| 424 |
|
| 425 |
|
| 426 |
if __name__ == "__main__":
|
| 427 |
args = init_parser().parse_args()
|
| 428 |
+
|
| 429 |
# Get configurations
|
| 430 |
train_config = DATASET_CONFIGs[args.train_dataset]
|
| 431 |
test_config = DATASET_CONFIGs[args.test_dataset] if args.test_dataset else None
|
| 432 |
model_config = MODEL_CONFIGS[args.model_name]
|
| 433 |
+
|
| 434 |
# Load data
|
| 435 |
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 436 |
+
train_config, test_config, args.test_size, max_train_samples=args.max_train_samples
|
|
|
|
|
|
|
|
|
|
| 437 |
)
|
| 438 |
+
|
| 439 |
# Set up MLflow
|
| 440 |
+
dagshub.init(repo_owner="se4ai2526-uniba", repo_name="Capibara", mlflow=True)
|
| 441 |
mlflow.set_experiment(MLFLOW_EXPERIMENT_NAME)
|
| 442 |
+
|
| 443 |
# Generate run name
|
| 444 |
run_name = args.run_name or f"{args.model_name}_{args.train_dataset}"
|
| 445 |
if args.test_dataset:
|
| 446 |
run_name += f"_{args.test_dataset}"
|
| 447 |
+
|
| 448 |
# Train model
|
| 449 |
with mlflow.start_run(run_name=run_name):
|
| 450 |
+
mlflow.log_params(
|
| 451 |
+
{
|
| 452 |
+
"train_dataset": args.train_dataset,
|
| 453 |
+
"test_dataset": args.test_dataset or "holdout",
|
| 454 |
+
"model_name": args.model_name,
|
| 455 |
+
"evaluation_strategy": eval_strategy,
|
| 456 |
+
"use_setfit": args.use_setfit,
|
| 457 |
+
}
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
if args.use_setfit:
|
| 461 |
train_model_setfit(model_config, train_ds, test_ds)
|
| 462 |
else:
|
| 463 |
+
train_model_transformers(model_config, train_ds, test_ds)
|
tests/test_train.py
ADDED
|
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import sys
|
| 3 |
+
import tempfile
|
| 4 |
+
from unittest.mock import patch
|
| 5 |
+
|
| 6 |
+
from datasets import Dataset
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import pytest
|
| 10 |
+
|
| 11 |
+
sys.path.insert(0, str(Path(__file__).parent.parent))
|
| 12 |
+
|
| 13 |
+
from syntetic_issue_report_data_generation.config import MODEL_CONFIGS, DATASET_CONFIGs
|
| 14 |
+
from syntetic_issue_report_data_generation.modeling.train import (
|
| 15 |
+
init_parser,
|
| 16 |
+
load_and_prepare_data,
|
| 17 |
+
train_model_setfit,
|
| 18 |
+
train_model_transformers,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@pytest.fixture
|
| 23 |
+
def temp_data_dir():
|
| 24 |
+
"""Create a temporary directory for test data files."""
|
| 25 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 26 |
+
yield Path(tmpdirname)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@pytest.fixture
|
| 30 |
+
def sample_train_data():
|
| 31 |
+
"""Create sample training data with balanced classes."""
|
| 32 |
+
return pd.DataFrame(
|
| 33 |
+
{
|
| 34 |
+
"title": [
|
| 35 |
+
"Bug in login",
|
| 36 |
+
"Feature request",
|
| 37 |
+
"Performance issue",
|
| 38 |
+
"UI problem",
|
| 39 |
+
"Bug in logout",
|
| 40 |
+
"Add search",
|
| 41 |
+
"Memory leak",
|
| 42 |
+
"New API endpoint",
|
| 43 |
+
"Crash on startup",
|
| 44 |
+
"Enhancement needed",
|
| 45 |
+
],
|
| 46 |
+
"body": [
|
| 47 |
+
"Cannot login to system",
|
| 48 |
+
"Add dark mode feature",
|
| 49 |
+
"Slow loading times",
|
| 50 |
+
"Button misaligned",
|
| 51 |
+
"Cannot logout properly",
|
| 52 |
+
"Need search functionality",
|
| 53 |
+
"High memory usage",
|
| 54 |
+
"REST API needed",
|
| 55 |
+
"Application crashes",
|
| 56 |
+
"Improve user experience",
|
| 57 |
+
],
|
| 58 |
+
"label": [
|
| 59 |
+
"bug",
|
| 60 |
+
"enhancement",
|
| 61 |
+
"bug",
|
| 62 |
+
"bug",
|
| 63 |
+
"bug",
|
| 64 |
+
"enhancement",
|
| 65 |
+
"bug",
|
| 66 |
+
"enhancement",
|
| 67 |
+
"bug",
|
| 68 |
+
"enhancement",
|
| 69 |
+
],
|
| 70 |
+
}
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@pytest.fixture
|
| 75 |
+
def sample_imbalanced_data():
|
| 76 |
+
"""Create sample data with imbalanced classes (for stratified sampling test)."""
|
| 77 |
+
return pd.DataFrame(
|
| 78 |
+
{
|
| 79 |
+
"title": [
|
| 80 |
+
"Bug 1",
|
| 81 |
+
"Bug 2",
|
| 82 |
+
"Bug 3",
|
| 83 |
+
"Bug 4",
|
| 84 |
+
"Bug 5",
|
| 85 |
+
"Bug 6",
|
| 86 |
+
"Bug 7",
|
| 87 |
+
"Bug 8",
|
| 88 |
+
"Enhancement 1",
|
| 89 |
+
"Enhancement 2",
|
| 90 |
+
],
|
| 91 |
+
"body": [
|
| 92 |
+
"Bug body 1",
|
| 93 |
+
"Bug body 2",
|
| 94 |
+
"Bug body 3",
|
| 95 |
+
"Bug body 4",
|
| 96 |
+
"Bug body 5",
|
| 97 |
+
"Bug body 6",
|
| 98 |
+
"Bug body 7",
|
| 99 |
+
"Bug body 8",
|
| 100 |
+
"Enhancement body 1",
|
| 101 |
+
"Enhancement body 2",
|
| 102 |
+
],
|
| 103 |
+
"label": [
|
| 104 |
+
"bug",
|
| 105 |
+
"bug",
|
| 106 |
+
"bug",
|
| 107 |
+
"bug",
|
| 108 |
+
"bug",
|
| 109 |
+
"bug",
|
| 110 |
+
"bug",
|
| 111 |
+
"bug",
|
| 112 |
+
"enhancement",
|
| 113 |
+
"enhancement",
|
| 114 |
+
],
|
| 115 |
+
}
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@pytest.fixture
|
| 120 |
+
def train_config_with_title(temp_data_dir, sample_train_data):
|
| 121 |
+
"""Create train config with title and body columns."""
|
| 122 |
+
train_path = temp_data_dir / "train_with_title.csv"
|
| 123 |
+
sample_train_data.to_csv(train_path, index=False)
|
| 124 |
+
|
| 125 |
+
return {
|
| 126 |
+
"data_path": "train_with_title.csv",
|
| 127 |
+
"label_col": "label",
|
| 128 |
+
"title_col": "title",
|
| 129 |
+
"body_col": "body",
|
| 130 |
+
"sep": ",",
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
@pytest.fixture
|
| 135 |
+
def imbalanced_train_config(temp_data_dir, sample_imbalanced_data):
|
| 136 |
+
"""Create train config with imbalanced data."""
|
| 137 |
+
train_path = temp_data_dir / "train_imbalanced.csv"
|
| 138 |
+
sample_imbalanced_data.to_csv(train_path, index=False)
|
| 139 |
+
|
| 140 |
+
return {
|
| 141 |
+
"data_path": "train_imbalanced.csv",
|
| 142 |
+
"label_col": "label",
|
| 143 |
+
"title_col": "title",
|
| 144 |
+
"body_col": "body",
|
| 145 |
+
"sep": ",",
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
@pytest.fixture
|
| 150 |
+
def minimal_train_data():
|
| 151 |
+
"""Create minimal training data for quick training tests."""
|
| 152 |
+
return pd.DataFrame(
|
| 153 |
+
{
|
| 154 |
+
"title": [
|
| 155 |
+
"Bug 1",
|
| 156 |
+
"Bug 2",
|
| 157 |
+
"Enhancement 1",
|
| 158 |
+
"Enhancement 2",
|
| 159 |
+
"Bug 3",
|
| 160 |
+
"Enhancement 3",
|
| 161 |
+
],
|
| 162 |
+
"body": [
|
| 163 |
+
"Bug body 1",
|
| 164 |
+
"Bug body 2",
|
| 165 |
+
"Enh body 1",
|
| 166 |
+
"Enh body 2",
|
| 167 |
+
"Bug body 3",
|
| 168 |
+
"Enh body 3",
|
| 169 |
+
],
|
| 170 |
+
"label": ["bug", "bug", "enhancement", "enhancement", "bug", "enhancement"],
|
| 171 |
+
}
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
@pytest.fixture
|
| 176 |
+
def minimal_train_config(temp_data_dir, minimal_train_data):
|
| 177 |
+
"""Create train config with minimal data for fast training."""
|
| 178 |
+
train_path = temp_data_dir / "minimal_train.csv"
|
| 179 |
+
minimal_train_data.to_csv(train_path, index=False)
|
| 180 |
+
|
| 181 |
+
return {
|
| 182 |
+
"data_path": "minimal_train.csv",
|
| 183 |
+
"label_col": "label",
|
| 184 |
+
"title_col": "title",
|
| 185 |
+
"body_col": "body",
|
| 186 |
+
"sep": ",",
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
@pytest.fixture
|
| 191 |
+
def minimal_model_config_setfit():
|
| 192 |
+
"""Create minimal SetFit model configuration for testing."""
|
| 193 |
+
return {
|
| 194 |
+
"model_checkpoint": "sentence-transformers/paraphrase-MiniLM-L3-v2", # Small, fast model
|
| 195 |
+
"params": {"num_epochs": 1, "batch_size": 4, "num_iterations": 5, "max_length": 64},
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
@pytest.fixture
|
| 200 |
+
def minimal_model_config_transformers():
|
| 201 |
+
"""Create minimal Transformers model configuration for testing."""
|
| 202 |
+
return {
|
| 203 |
+
"model_checkpoint": "prajjwal1/bert-tiny", # Very small BERT model
|
| 204 |
+
"params": {
|
| 205 |
+
"num_train_epochs": 1,
|
| 206 |
+
"per_device_train_batch_size": 2,
|
| 207 |
+
"per_device_eval_batch_size": 2,
|
| 208 |
+
"learning_rate": 5e-5,
|
| 209 |
+
"warmup_steps": 0,
|
| 210 |
+
"weight_decay": 0.01,
|
| 211 |
+
"logging_steps": 1,
|
| 212 |
+
},
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class TestDataLoadingAndPreparation:
|
| 217 |
+
"""Test class for data loading and preparation functionality."""
|
| 218 |
+
|
| 219 |
+
def test_load_data_with_valid_config(self, train_config_with_title, temp_data_dir):
|
| 220 |
+
"""Verify that data loads correctly with valid train dataset configuration."""
|
| 221 |
+
with patch(
|
| 222 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 223 |
+
temp_data_dir,
|
| 224 |
+
):
|
| 225 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 226 |
+
train_config_with_title, test_config=None, test_size=0.2
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
# Check that datasets were created
|
| 230 |
+
assert isinstance(train_ds, Dataset)
|
| 231 |
+
assert isinstance(test_ds, Dataset)
|
| 232 |
+
|
| 233 |
+
# Check that datasets have correct columns
|
| 234 |
+
assert set(train_ds.column_names) == {"text", "label"}
|
| 235 |
+
assert set(test_ds.column_names) == {"text", "label"}
|
| 236 |
+
|
| 237 |
+
# Check that datasets are not empty
|
| 238 |
+
assert len(train_ds) > 0
|
| 239 |
+
assert len(test_ds) > 0
|
| 240 |
+
|
| 241 |
+
# Check total samples
|
| 242 |
+
assert len(train_ds) + len(test_ds) == 10
|
| 243 |
+
|
| 244 |
+
# Check label encoder is attached
|
| 245 |
+
assert hasattr(train_ds, "label_encoder")
|
| 246 |
+
assert hasattr(test_ds, "label_encoder")
|
| 247 |
+
|
| 248 |
+
# Check that labels are integers
|
| 249 |
+
assert all(isinstance(label, int) for label in train_ds["label"])
|
| 250 |
+
assert all(isinstance(label, int) for label in test_ds["label"])
|
| 251 |
+
|
| 252 |
+
def test_load_data_creates_holdout_split(self, train_config_with_title, temp_data_dir):
|
| 253 |
+
"""Verify holdout split is created when no test dataset is provided."""
|
| 254 |
+
with patch(
|
| 255 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 256 |
+
temp_data_dir,
|
| 257 |
+
):
|
| 258 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 259 |
+
train_config_with_title, test_config=None, test_size=0.2
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Check eval strategy is holdout
|
| 263 |
+
assert eval_strategy == "holdout"
|
| 264 |
+
|
| 265 |
+
# Check that both datasets exist
|
| 266 |
+
assert len(train_ds) > 0
|
| 267 |
+
assert len(test_ds) > 0
|
| 268 |
+
|
| 269 |
+
# Check that split is approximately correct (80/20 split of 10 samples)
|
| 270 |
+
total_samples = len(train_ds) + len(test_ds)
|
| 271 |
+
assert total_samples == 10
|
| 272 |
+
assert len(test_ds) == 2 # 20% of 10 = 2
|
| 273 |
+
assert len(train_ds) == 8 # 80% of 10 = 8
|
| 274 |
+
|
| 275 |
+
# Verify no data leakage (no overlap between train and test)
|
| 276 |
+
train_texts = set(train_ds["text"])
|
| 277 |
+
test_texts = set(test_ds["text"])
|
| 278 |
+
assert len(train_texts.intersection(test_texts)) == 0
|
| 279 |
+
|
| 280 |
+
def test_label_encoding_consistency(self, train_config_with_title, temp_data_dir):
|
| 281 |
+
"""Verify labels are encoded consistently across train/test sets."""
|
| 282 |
+
with patch(
|
| 283 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 284 |
+
temp_data_dir,
|
| 285 |
+
):
|
| 286 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 287 |
+
train_config_with_title, test_config=None, test_size=0.2
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Check that label encoders are the same object
|
| 291 |
+
assert train_ds.label_encoder is test_ds.label_encoder
|
| 292 |
+
|
| 293 |
+
# Check that labels are integers
|
| 294 |
+
assert all(isinstance(label, int) for label in train_ds["label"])
|
| 295 |
+
assert all(isinstance(label, int) for label in test_ds["label"])
|
| 296 |
+
|
| 297 |
+
# Check that label classes are consistent
|
| 298 |
+
train_label_classes = train_ds.label_encoder.classes_
|
| 299 |
+
test_label_classes = test_ds.label_encoder.classes_
|
| 300 |
+
assert list(train_label_classes) == list(test_label_classes)
|
| 301 |
+
|
| 302 |
+
# Check that we have the expected classes (bug and enhancement)
|
| 303 |
+
expected_classes = sorted(["bug", "enhancement"])
|
| 304 |
+
actual_classes = sorted(train_ds.label_encoder.classes_)
|
| 305 |
+
assert actual_classes == expected_classes
|
| 306 |
+
|
| 307 |
+
# Check that encoded labels are in valid range [0, num_classes)
|
| 308 |
+
num_classes = len(train_ds.label_encoder.classes_)
|
| 309 |
+
assert num_classes == 2
|
| 310 |
+
assert all(0 <= label < num_classes for label in train_ds["label"])
|
| 311 |
+
assert all(0 <= label < num_classes for label in test_ds["label"])
|
| 312 |
+
|
| 313 |
+
# Check that both classes appear in train set (due to stratification)
|
| 314 |
+
train_unique_labels = set(train_ds["label"])
|
| 315 |
+
assert len(train_unique_labels) == 2
|
| 316 |
+
|
| 317 |
+
def test_text_column_creation_with_title_and_body(
|
| 318 |
+
self, train_config_with_title, temp_data_dir
|
| 319 |
+
):
|
| 320 |
+
"""Verify text column combines title and body correctly."""
|
| 321 |
+
with patch(
|
| 322 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 323 |
+
temp_data_dir,
|
| 324 |
+
):
|
| 325 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 326 |
+
train_config_with_title, test_config=None, test_size=0.2
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
# Check that text column exists and is the only text column
|
| 330 |
+
assert "text" in train_ds.column_names
|
| 331 |
+
assert "text" in test_ds.column_names
|
| 332 |
+
assert "title" not in train_ds.column_names
|
| 333 |
+
assert "body" not in train_ds.column_names
|
| 334 |
+
|
| 335 |
+
# Check that all text entries are non-empty strings
|
| 336 |
+
assert all(isinstance(text, str) and len(text) > 0 for text in train_ds["text"])
|
| 337 |
+
assert all(isinstance(text, str) and len(text) > 0 for text in test_ds["text"])
|
| 338 |
+
|
| 339 |
+
# Check that text contains content (not just whitespace)
|
| 340 |
+
assert all(len(text.strip()) > 0 for text in train_ds["text"])
|
| 341 |
+
assert all(len(text.strip()) > 0 for text in test_ds["text"])
|
| 342 |
+
|
| 343 |
+
# Check that text is longer than just title or body alone
|
| 344 |
+
# (indicating concatenation happened)
|
| 345 |
+
for text in train_ds["text"]:
|
| 346 |
+
# Text should have reasonable length (at least 10 chars)
|
| 347 |
+
assert len(text) >= 10
|
| 348 |
+
|
| 349 |
+
def test_max_train_samples_stratified_sampling(self, imbalanced_train_config, temp_data_dir):
|
| 350 |
+
"""Verify stratified sampling works correctly when max_train_samples is specified."""
|
| 351 |
+
with patch(
|
| 352 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 353 |
+
temp_data_dir,
|
| 354 |
+
):
|
| 355 |
+
# Original data has 10 samples: 8 bugs, 2 enhancements
|
| 356 |
+
# Request only 4 samples
|
| 357 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 358 |
+
imbalanced_train_config, test_config=None, test_size=0.2, max_train_samples=4
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
# Check that train dataset size is reduced to 4
|
| 362 |
+
assert len(train_ds) == 4
|
| 363 |
+
|
| 364 |
+
# Check that we still have both classes (stratified sampling)
|
| 365 |
+
unique_labels = set(train_ds["label"])
|
| 366 |
+
assert len(unique_labels) == 2, "Stratified sampling should preserve both classes"
|
| 367 |
+
|
| 368 |
+
# Check that class distribution is approximately maintained
|
| 369 |
+
# Original: 80% bug, 20% enhancement
|
| 370 |
+
# With 4 samples: should have ~3 bugs, ~1 enhancement
|
| 371 |
+
label_counts = {}
|
| 372 |
+
for label in train_ds["label"]:
|
| 373 |
+
label_name = train_ds.label_encoder.inverse_transform([label])[0]
|
| 374 |
+
label_counts[label_name] = label_counts.get(label_name, 0) + 1
|
| 375 |
+
|
| 376 |
+
# At least one sample from minority class
|
| 377 |
+
assert label_counts.get("enhancement", 0) >= 1
|
| 378 |
+
# Majority class should have more samples
|
| 379 |
+
assert label_counts.get("bug", 0) >= label_counts.get("enhancement", 0)
|
| 380 |
+
|
| 381 |
+
# Test dataset should remain at 20% of original (2 samples)
|
| 382 |
+
assert len(test_ds) == 2
|
| 383 |
+
|
| 384 |
+
# Total should be less than original
|
| 385 |
+
assert len(train_ds) + len(test_ds) < 10
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
class TestConfiguration:
|
| 389 |
+
"""Test class for configuration and argument parsing functionality."""
|
| 390 |
+
|
| 391 |
+
def test_parser_accepts_valid_arguments(self):
|
| 392 |
+
"""Verify parser accepts all valid combinations of arguments."""
|
| 393 |
+
parser = init_parser()
|
| 394 |
+
|
| 395 |
+
# Get first valid dataset and model from configs
|
| 396 |
+
valid_dataset = list(DATASET_CONFIGs.keys())[0]
|
| 397 |
+
valid_model = list(MODEL_CONFIGS.keys())[0]
|
| 398 |
+
|
| 399 |
+
# Test 1: Minimal required arguments
|
| 400 |
+
args = parser.parse_args(["--train-dataset", valid_dataset, "--model-name", valid_model])
|
| 401 |
+
assert args.train_dataset == valid_dataset
|
| 402 |
+
assert args.model_name == valid_model
|
| 403 |
+
assert args.test_dataset is None
|
| 404 |
+
assert args.test_size == 0.2 # default value
|
| 405 |
+
assert args.max_train_samples is None # default value
|
| 406 |
+
assert args.use_setfit is False # default value
|
| 407 |
+
assert args.run_name is None # default value
|
| 408 |
+
|
| 409 |
+
# Test 2: All arguments provided
|
| 410 |
+
if len(DATASET_CONFIGs.keys()) > 1:
|
| 411 |
+
valid_test_dataset = list(DATASET_CONFIGs.keys())[1]
|
| 412 |
+
else:
|
| 413 |
+
valid_test_dataset = valid_dataset
|
| 414 |
+
|
| 415 |
+
args = parser.parse_args(
|
| 416 |
+
[
|
| 417 |
+
"--train-dataset",
|
| 418 |
+
valid_dataset,
|
| 419 |
+
"--test-dataset",
|
| 420 |
+
valid_test_dataset,
|
| 421 |
+
"--model-name",
|
| 422 |
+
valid_model,
|
| 423 |
+
"--use-setfit",
|
| 424 |
+
"--test-size",
|
| 425 |
+
"0.3",
|
| 426 |
+
"--max-train-samples",
|
| 427 |
+
"100",
|
| 428 |
+
"--run-name",
|
| 429 |
+
"test_run",
|
| 430 |
+
]
|
| 431 |
+
)
|
| 432 |
+
assert args.train_dataset == valid_dataset
|
| 433 |
+
assert args.test_dataset == valid_test_dataset
|
| 434 |
+
assert args.model_name == valid_model
|
| 435 |
+
assert args.use_setfit is True
|
| 436 |
+
assert args.test_size == 0.3
|
| 437 |
+
assert args.max_train_samples == 100
|
| 438 |
+
assert args.run_name == "test_run"
|
| 439 |
+
|
| 440 |
+
# Test 3: Only use-setfit flag
|
| 441 |
+
args = parser.parse_args(
|
| 442 |
+
["--train-dataset", valid_dataset, "--model-name", valid_model, "--use-setfit"]
|
| 443 |
+
)
|
| 444 |
+
assert args.use_setfit is True
|
| 445 |
+
|
| 446 |
+
# Test 4: Custom test-size
|
| 447 |
+
args = parser.parse_args(
|
| 448 |
+
["--train-dataset", valid_dataset, "--model-name", valid_model, "--test-size", "0.15"]
|
| 449 |
+
)
|
| 450 |
+
assert args.test_size == 0.15
|
| 451 |
+
|
| 452 |
+
# Test 5: Custom max-train-samples
|
| 453 |
+
args = parser.parse_args(
|
| 454 |
+
[
|
| 455 |
+
"--train-dataset",
|
| 456 |
+
valid_dataset,
|
| 457 |
+
"--model-name",
|
| 458 |
+
valid_model,
|
| 459 |
+
"--max-train-samples",
|
| 460 |
+
"500",
|
| 461 |
+
]
|
| 462 |
+
)
|
| 463 |
+
assert args.max_train_samples == 500
|
| 464 |
+
|
| 465 |
+
def test_parser_rejects_invalid_dataset_names(self):
|
| 466 |
+
"""Verify parser rejects dataset names not in DATASET_CONFIGs."""
|
| 467 |
+
parser = init_parser()
|
| 468 |
+
|
| 469 |
+
# Get valid model
|
| 470 |
+
valid_model = list(MODEL_CONFIGS.keys())[0]
|
| 471 |
+
|
| 472 |
+
# Test 1: Invalid train dataset
|
| 473 |
+
with pytest.raises(SystemExit):
|
| 474 |
+
parser.parse_args(
|
| 475 |
+
["--train-dataset", "invalid_dataset_name", "--model-name", valid_model]
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
# Test 2: Invalid test dataset
|
| 479 |
+
valid_dataset = list(DATASET_CONFIGs.keys())[0]
|
| 480 |
+
with pytest.raises(SystemExit):
|
| 481 |
+
parser.parse_args(
|
| 482 |
+
[
|
| 483 |
+
"--train-dataset",
|
| 484 |
+
valid_dataset,
|
| 485 |
+
"--test-dataset",
|
| 486 |
+
"invalid_test_dataset",
|
| 487 |
+
"--model-name",
|
| 488 |
+
valid_model,
|
| 489 |
+
]
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
# Test 3: Invalid model name
|
| 493 |
+
with pytest.raises(SystemExit):
|
| 494 |
+
parser.parse_args(
|
| 495 |
+
["--train-dataset", valid_dataset, "--model-name", "invalid_model_name"]
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
# Test 4: Missing required argument (train-dataset)
|
| 499 |
+
with pytest.raises(SystemExit):
|
| 500 |
+
parser.parse_args(["--model-name", valid_model])
|
| 501 |
+
|
| 502 |
+
# Test 5: Missing required argument (model-name)
|
| 503 |
+
with pytest.raises(SystemExit):
|
| 504 |
+
parser.parse_args(["--train-dataset", valid_dataset])
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
class TestTrainingPipeline:
|
| 508 |
+
@pytest.mark.slow
|
| 509 |
+
def test_setfit_training_completes(
|
| 510 |
+
self, minimal_train_config, minimal_model_config_setfit, temp_data_dir
|
| 511 |
+
):
|
| 512 |
+
"""Verify SetFit training runs without errors (using minimal data)."""
|
| 513 |
+
with patch(
|
| 514 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 515 |
+
temp_data_dir,
|
| 516 |
+
):
|
| 517 |
+
# Load data
|
| 518 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 519 |
+
minimal_train_config,
|
| 520 |
+
test_config=None,
|
| 521 |
+
test_size=0.33, # 2 samples for test, 4 for train
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
# Mock MLflow to avoid logging during tests
|
| 525 |
+
with patch("syntetic_issue_report_data_generation.modeling.train.mlflow"):
|
| 526 |
+
# Train model
|
| 527 |
+
result = train_model_setfit(minimal_model_config_setfit, train_ds, test_ds)
|
| 528 |
+
|
| 529 |
+
# Check that result is returned
|
| 530 |
+
assert result is not None
|
| 531 |
+
|
| 532 |
+
# Check that result has expected structure
|
| 533 |
+
model, metrics, y_true, y_pred, model_type = result
|
| 534 |
+
|
| 535 |
+
# Check model type
|
| 536 |
+
assert model_type == "setfit"
|
| 537 |
+
|
| 538 |
+
# Check that model is returned
|
| 539 |
+
assert model is not None
|
| 540 |
+
|
| 541 |
+
# Check that metrics are computed
|
| 542 |
+
assert isinstance(metrics, dict)
|
| 543 |
+
assert "accuracy" in metrics
|
| 544 |
+
assert "f1_macro" in metrics
|
| 545 |
+
assert "f1_weighted" in metrics
|
| 546 |
+
|
| 547 |
+
# Check that metrics are in valid range [0, 1]
|
| 548 |
+
assert 0 <= metrics["accuracy"] <= 1
|
| 549 |
+
assert 0 <= metrics["f1_macro"] <= 1
|
| 550 |
+
assert 0 <= metrics["f1_weighted"] <= 1
|
| 551 |
+
|
| 552 |
+
# Check that predictions are returned
|
| 553 |
+
assert y_true is not None
|
| 554 |
+
assert y_pred is not None
|
| 555 |
+
|
| 556 |
+
# Check that predictions have correct length
|
| 557 |
+
assert len(y_true) == len(test_ds)
|
| 558 |
+
assert len(y_pred) == len(test_ds)
|
| 559 |
+
|
| 560 |
+
# Check that predictions are in valid label space
|
| 561 |
+
num_classes = len(train_ds.label_encoder.classes_)
|
| 562 |
+
assert all(0 <= pred < num_classes for pred in y_pred)
|
| 563 |
+
assert all(0 <= true < num_classes for true in y_true)
|
| 564 |
+
|
| 565 |
+
@pytest.mark.slow
|
| 566 |
+
def test_transformers_training_completes(
|
| 567 |
+
self, minimal_train_config, minimal_model_config_transformers, temp_data_dir
|
| 568 |
+
):
|
| 569 |
+
"""Verify Transformers training runs without errors (using minimal data)."""
|
| 570 |
+
with patch(
|
| 571 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 572 |
+
temp_data_dir,
|
| 573 |
+
):
|
| 574 |
+
# Load data
|
| 575 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 576 |
+
minimal_train_config,
|
| 577 |
+
test_config=None,
|
| 578 |
+
test_size=0.33, # 2 samples for test, 4 for train
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
# Mock MLflow to avoid logging during tests
|
| 582 |
+
with patch("syntetic_issue_report_data_generation.modeling.train.mlflow"):
|
| 583 |
+
# Train model
|
| 584 |
+
result = train_model_transformers(
|
| 585 |
+
minimal_model_config_transformers, train_ds, test_ds
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
# Check that result is returned
|
| 589 |
+
assert result is not None
|
| 590 |
+
|
| 591 |
+
# Check that result has expected structure
|
| 592 |
+
model_tuple, metrics, y_true, y_pred, model_type = result
|
| 593 |
+
|
| 594 |
+
# Check model type
|
| 595 |
+
assert model_type == "transformers"
|
| 596 |
+
|
| 597 |
+
# Check that model and tokenizer are returned
|
| 598 |
+
assert model_tuple is not None
|
| 599 |
+
assert isinstance(model_tuple, tuple)
|
| 600 |
+
assert len(model_tuple) == 2
|
| 601 |
+
model, tokenizer = model_tuple
|
| 602 |
+
assert model is not None
|
| 603 |
+
assert tokenizer is not None
|
| 604 |
+
|
| 605 |
+
# Check that metrics are computed
|
| 606 |
+
assert isinstance(metrics, dict)
|
| 607 |
+
# Transformers returns metrics with eval_ prefix
|
| 608 |
+
assert any("accuracy" in key for key in metrics.keys())
|
| 609 |
+
|
| 610 |
+
# Extract accuracy value (could be 'accuracy' or 'eval_accuracy')
|
| 611 |
+
accuracy_key = [k for k in metrics.keys() if "accuracy" in k][0]
|
| 612 |
+
accuracy = metrics[accuracy_key]
|
| 613 |
+
assert 0 <= accuracy <= 1
|
| 614 |
+
|
| 615 |
+
# Check that predictions are returned
|
| 616 |
+
assert y_true is not None
|
| 617 |
+
assert y_pred is not None
|
| 618 |
+
|
| 619 |
+
# Check that predictions have correct length
|
| 620 |
+
assert len(y_true) == len(test_ds)
|
| 621 |
+
assert len(y_pred) == len(test_ds)
|
| 622 |
+
|
| 623 |
+
# Check that predictions are in valid label space
|
| 624 |
+
num_classes = len(train_ds.label_encoder.classes_)
|
| 625 |
+
assert all(0 <= pred < num_classes for pred in y_pred)
|
| 626 |
+
assert all(0 <= true < num_classes for true in y_true)
|
| 627 |
+
|
| 628 |
+
# Check that predictions are numpy arrays or lists of integers
|
| 629 |
+
assert all(isinstance(pred, (int, np.integer)) for pred in y_pred)
|
| 630 |
+
assert all(isinstance(true, (int, np.integer)) for true in y_true)
|
| 631 |
+
|
| 632 |
+
|
| 633 |
+
class TestErrorHandling:
|
| 634 |
+
"""Test class for error handling functionality."""
|
| 635 |
+
|
| 636 |
+
def test_missing_train_file_raises_error(self, temp_data_dir):
|
| 637 |
+
"""Verify appropriate error when train file doesn't exist."""
|
| 638 |
+
# Create config pointing to non-existent file
|
| 639 |
+
missing_file_config = {
|
| 640 |
+
"data_path": "non_existent_file.csv",
|
| 641 |
+
"label_col": "label",
|
| 642 |
+
"title_col": "title",
|
| 643 |
+
"body_col": "body",
|
| 644 |
+
"sep": ",",
|
| 645 |
+
}
|
| 646 |
+
|
| 647 |
+
with patch(
|
| 648 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 649 |
+
temp_data_dir,
|
| 650 |
+
):
|
| 651 |
+
# Should call sys.exit(1) when file doesn't exist
|
| 652 |
+
with pytest.raises(SystemExit) as excinfo:
|
| 653 |
+
load_and_prepare_data(missing_file_config, test_config=None, test_size=0.2)
|
| 654 |
+
|
| 655 |
+
# Check that exit code is 1
|
| 656 |
+
assert excinfo.value.code == 1
|
| 657 |
+
|
| 658 |
+
def test_invalid_label_column(self, temp_data_dir):
|
| 659 |
+
"""Verify error handling when specified label column doesn't exist."""
|
| 660 |
+
# Create data with specific columns
|
| 661 |
+
sample_data = pd.DataFrame(
|
| 662 |
+
{
|
| 663 |
+
"title": ["Bug 1", "Enhancement 1"],
|
| 664 |
+
"body": ["Bug body", "Enhancement body"],
|
| 665 |
+
"type": ["bug", "enhancement"], # Different column name
|
| 666 |
+
}
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
# Save to file
|
| 670 |
+
train_path = temp_data_dir / "invalid_label_col.csv"
|
| 671 |
+
sample_data.to_csv(train_path, index=False)
|
| 672 |
+
|
| 673 |
+
# Create config with wrong label column name
|
| 674 |
+
invalid_label_config = {
|
| 675 |
+
"data_path": "invalid_label_col.csv",
|
| 676 |
+
"label_col": "label", # This column doesn't exist
|
| 677 |
+
"title_col": "title",
|
| 678 |
+
"body_col": "body",
|
| 679 |
+
"sep": ",",
|
| 680 |
+
}
|
| 681 |
+
|
| 682 |
+
with patch(
|
| 683 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 684 |
+
temp_data_dir,
|
| 685 |
+
):
|
| 686 |
+
# Should call sys.exit(1) when label column doesn't exist
|
| 687 |
+
with pytest.raises(SystemExit) as excinfo:
|
| 688 |
+
load_and_prepare_data(invalid_label_config, test_config=None, test_size=0.2)
|
| 689 |
+
|
| 690 |
+
# Check that exit code is 1
|
| 691 |
+
assert excinfo.value.code == 1
|
| 692 |
+
|
| 693 |
+
def test_invalid_body_column(self, temp_data_dir):
|
| 694 |
+
"""Verify error handling when specified body column doesn't exist."""
|
| 695 |
+
# Create data with specific columns
|
| 696 |
+
sample_data = pd.DataFrame(
|
| 697 |
+
{
|
| 698 |
+
"title": ["Bug 1", "Enhancement 1"],
|
| 699 |
+
"description": ["Bug body", "Enhancement body"], # Different column name
|
| 700 |
+
"label": ["bug", "enhancement"],
|
| 701 |
+
}
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
# Save to file
|
| 705 |
+
train_path = temp_data_dir / "invalid_body_col.csv"
|
| 706 |
+
sample_data.to_csv(train_path, index=False)
|
| 707 |
+
|
| 708 |
+
# Create config with wrong body column name
|
| 709 |
+
invalid_body_config = {
|
| 710 |
+
"data_path": "invalid_body_col.csv",
|
| 711 |
+
"label_col": "label",
|
| 712 |
+
"title_col": "title",
|
| 713 |
+
"body_col": "body", # This column doesn't exist
|
| 714 |
+
"sep": ",",
|
| 715 |
+
}
|
| 716 |
+
|
| 717 |
+
with patch(
|
| 718 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 719 |
+
temp_data_dir,
|
| 720 |
+
):
|
| 721 |
+
# Should call sys.exit(1) when body column doesn't exist
|
| 722 |
+
with pytest.raises(SystemExit) as excinfo:
|
| 723 |
+
load_and_prepare_data(invalid_body_config, test_config=None, test_size=0.2)
|
| 724 |
+
|
| 725 |
+
# Check that exit code is 1
|
| 726 |
+
assert excinfo.value.code == 1
|
| 727 |
+
|
| 728 |
+
|
| 729 |
+
class TestEdgeCases:
|
| 730 |
+
"""Test class for edge case scenarios."""
|
| 731 |
+
|
| 732 |
+
def test_very_small_dataset(self, temp_data_dir):
|
| 733 |
+
"""Verify training with very small datasets (< 10 samples)."""
|
| 734 |
+
# Create very small dataset (6 samples total, 3 per class)
|
| 735 |
+
very_small_data = pd.DataFrame(
|
| 736 |
+
{
|
| 737 |
+
"title": ["Bug 1", "Bug 2", "Bug 3", "Enh 1", "Enh 2", "Enh 3"],
|
| 738 |
+
"body": [
|
| 739 |
+
"Small bug 1",
|
| 740 |
+
"Small bug 2",
|
| 741 |
+
"Small bug 3",
|
| 742 |
+
"Small enh 1",
|
| 743 |
+
"Small enh 2",
|
| 744 |
+
"Small enh 3",
|
| 745 |
+
],
|
| 746 |
+
"label": ["bug", "bug", "bug", "enhancement", "enhancement", "enhancement"],
|
| 747 |
+
}
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
# Save to file
|
| 751 |
+
train_path = temp_data_dir / "very_small.csv"
|
| 752 |
+
very_small_data.to_csv(train_path, index=False)
|
| 753 |
+
|
| 754 |
+
small_config = {
|
| 755 |
+
"data_path": "very_small.csv",
|
| 756 |
+
"label_col": "label",
|
| 757 |
+
"title_col": "title",
|
| 758 |
+
"body_col": "body",
|
| 759 |
+
"sep": ",",
|
| 760 |
+
}
|
| 761 |
+
|
| 762 |
+
with patch(
|
| 763 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 764 |
+
temp_data_dir,
|
| 765 |
+
):
|
| 766 |
+
# Load data with small test split to ensure at least 1 sample per class in train
|
| 767 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 768 |
+
small_config,
|
| 769 |
+
test_config=None,
|
| 770 |
+
test_size=0.33, # 2 samples for test (1 per class), 4 for train
|
| 771 |
+
)
|
| 772 |
+
|
| 773 |
+
# Check that datasets were created despite small size
|
| 774 |
+
assert isinstance(train_ds, Dataset)
|
| 775 |
+
assert isinstance(test_ds, Dataset)
|
| 776 |
+
|
| 777 |
+
# Check that both datasets have samples
|
| 778 |
+
assert len(train_ds) > 0
|
| 779 |
+
assert len(test_ds) > 0
|
| 780 |
+
|
| 781 |
+
# Check total is preserved
|
| 782 |
+
assert len(train_ds) + len(test_ds) == 6
|
| 783 |
+
|
| 784 |
+
# Check that stratification preserved both classes in train set
|
| 785 |
+
train_unique_labels = set(train_ds["label"])
|
| 786 |
+
assert len(train_unique_labels) >= 1 # At least one class
|
| 787 |
+
|
| 788 |
+
# Check that we have valid label encoding
|
| 789 |
+
num_classes = len(train_ds.label_encoder.classes_)
|
| 790 |
+
assert num_classes == 2
|
| 791 |
+
assert all(0 <= label < num_classes for label in train_ds["label"])
|
| 792 |
+
assert all(0 <= label < num_classes for label in test_ds["label"])
|
| 793 |
+
|
| 794 |
+
# Check that text was properly created
|
| 795 |
+
assert all(isinstance(text, str) and len(text) > 0 for text in train_ds["text"])
|
| 796 |
+
assert all(isinstance(text, str) and len(text) > 0 for text in test_ds["text"])
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
class TestOutputValidation:
|
| 800 |
+
"""Test class for output validation functionality."""
|
| 801 |
+
|
| 802 |
+
@pytest.mark.slow
|
| 803 |
+
def test_predictions_match_label_space(
|
| 804 |
+
self,
|
| 805 |
+
minimal_train_config,
|
| 806 |
+
minimal_model_config_setfit,
|
| 807 |
+
minimal_model_config_transformers,
|
| 808 |
+
temp_data_dir,
|
| 809 |
+
):
|
| 810 |
+
"""Verify predictions are within valid label space."""
|
| 811 |
+
with patch(
|
| 812 |
+
"syntetic_issue_report_data_generation.modeling.train.SOFT_CLEANED_DATA_DIR",
|
| 813 |
+
temp_data_dir,
|
| 814 |
+
):
|
| 815 |
+
# Load data
|
| 816 |
+
train_ds, test_ds, eval_strategy = load_and_prepare_data(
|
| 817 |
+
minimal_train_config,
|
| 818 |
+
test_config=None,
|
| 819 |
+
test_size=0.33, # 2 samples for tfest, 4 for train
|
| 820 |
+
)
|
| 821 |
+
|
| 822 |
+
# Get the valid label space
|
| 823 |
+
num_classes = len(train_ds.label_encoder.classes_)
|
| 824 |
+
valid_label_space = set(range(num_classes))
|
| 825 |
+
|
| 826 |
+
# Mock MLflow to avoid logging during tests
|
| 827 |
+
with patch("syntetic_issue_report_data_generation.modeling.train.mlflow"):
|
| 828 |
+
# Test with SetFit
|
| 829 |
+
model, metrics, y_true, y_pred, model_type = train_model_setfit(
|
| 830 |
+
minimal_model_config_setfit, train_ds, test_ds
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
# Check that all predictions are in valid label space
|
| 834 |
+
assert all(
|
| 835 |
+
pred in valid_label_space for pred in y_pred
|
| 836 |
+
), f"SetFit predictions contain invalid labels. Valid: {valid_label_space}, Got: {set(y_pred)}"
|
| 837 |
+
|
| 838 |
+
# Check that all true labels are in valid label space
|
| 839 |
+
assert all(
|
| 840 |
+
true in valid_label_space for true in y_true
|
| 841 |
+
), f"True labels contain invalid values. Valid: {valid_label_space}, Got: {set(y_true)}"
|
| 842 |
+
|
| 843 |
+
# Check that predictions are within [0, num_classes)
|
| 844 |
+
assert all(
|
| 845 |
+
0 <= pred < num_classes for pred in y_pred
|
| 846 |
+
), f"SetFit predictions out of range [0, {num_classes})"
|
| 847 |
+
|
| 848 |
+
# Check that y_true matches the original test labels
|
| 849 |
+
assert list(y_true) == list(
|
| 850 |
+
test_ds["label"]
|
| 851 |
+
), "True labels don't match original test dataset labels"
|
| 852 |
+
|
| 853 |
+
# Test with Transformers
|
| 854 |
+
(model_t, tokenizer), metrics_t, y_true_t, y_pred_t, model_type_t = (
|
| 855 |
+
train_model_transformers(minimal_model_config_transformers, train_ds, test_ds)
|
| 856 |
+
)
|
| 857 |
+
|
| 858 |
+
# Check that all predictions are in valid label space
|
| 859 |
+
assert all(
|
| 860 |
+
pred in valid_label_space for pred in y_pred_t
|
| 861 |
+
), f"Transformers predictions contain invalid labels. Valid: {valid_label_space}, Got: {set(y_pred_t)}"
|
| 862 |
+
|
| 863 |
+
# Check that all true labels are in valid label space
|
| 864 |
+
assert all(
|
| 865 |
+
true in valid_label_space for true in y_true_t
|
| 866 |
+
), f"True labels contain invalid values. Valid: {valid_label_space}, Got: {set(y_true_t)}"
|
| 867 |
+
|
| 868 |
+
# Check that predictions are within [0, num_classes)
|
| 869 |
+
assert all(
|
| 870 |
+
0 <= pred < num_classes for pred in y_pred_t
|
| 871 |
+
), f"Transformers predictions out of range [0, {num_classes})"
|
| 872 |
+
|
| 873 |
+
# Check that y_true matches the original test labels
|
| 874 |
+
assert list(y_true_t) == list(
|
| 875 |
+
test_ds["label"]
|
| 876 |
+
), "True labels don't match original test dataset labels"
|
| 877 |
+
|
| 878 |
+
# Additional check: verify predictions are integers
|
| 879 |
+
assert all(
|
| 880 |
+
isinstance(pred, (int, np.integer)) for pred in y_pred
|
| 881 |
+
), "SetFit predictions must be integers"
|
| 882 |
+
assert all(
|
| 883 |
+
isinstance(pred, (int, np.integer)) for pred in y_pred_t
|
| 884 |
+
), "Transformers predictions must be integers"
|
| 885 |
+
|
| 886 |
+
# Check that at least some predictions were made (not all same)
|
| 887 |
+
# This is a sanity check - with random initialization, we should get some variation
|
| 888 |
+
# (Though with very small data, it's possible all predictions are the same)
|
| 889 |
+
unique_preds = len(set(y_pred))
|
| 890 |
+
unique_preds_t = len(set(y_pred_t))
|
| 891 |
+
assert unique_preds >= 1, "SetFit made no predictions"
|
| 892 |
+
assert unique_preds_t >= 1, "Transformers made no predictions"
|