File size: 15,434 Bytes
be59f35 bde0b52 1352fd2 bde0b52 be59f35 60d5f26 39c39d5 be59f35 012ac68 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 7557b44 bde0b52 7557b44 bde0b52 be59f35 012ac68 be59f35 bde0b52 be59f35 bde0b52 ed993b7 bde0b52 ed993b7 bde0b52 be59f35 bde0b52 be59f35 bde0b52 39c39d5 bde0b52 be59f35 bde0b52 be59f35 39c39d5 be59f35 bde0b52 be59f35 bde0b52 be59f35 39c39d5 be59f35 39c39d5 be59f35 39c39d5 be59f35 bde0b52 be59f35 012ac68 be59f35 bde0b52 39c39d5 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 012ac68 be59f35 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 012ac68 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 bde0b52 be59f35 012ac68 bde0b52 be59f35 1352fd2 be59f35 1352fd2 be59f35 7557b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import html
import re
import great_expectations as ge
from loguru import logger
import pandas as pd
from syntetic_issue_report_data_generation.config import (
INTERIM_DATA_DIR,
RAW_DATA_DIR,
DATASET_CONFIGs,
)
class DataPreprocessing:
"""
Class used to check dataset integrity and clean it
"""
def __init__(self, dataset_name):
"""
Initialize the class with the dataset configuration
Args:
dataset_name (str): Name of the dataset that needs to be processed
"""
self.__dataset_conf = DATASET_CONFIGs[dataset_name]
self.__dataset_name = dataset_name
self.__body_col = self.__dataset_conf["body_col"]
self.__label_col = self.__dataset_conf["label_col"]
self.__title_col = self.__dataset_conf["title_col"]
self.__unmeaningful_body_length = None
self.__validation_definition = None
def load_dataset(self):
"""
Load the dataset in memory and initialize the GE context
"""
# load dataset
self.__df = pd.read_csv(
RAW_DATA_DIR / f"{self.__dataset_conf['data_path']}",
sep=self.__dataset_conf.get("sep", ","),
encoding="utf-8",
)
# load the dataset in GE
self.__context = ge.get_context()
# set data source
self.__data_source = self.__context.data_sources.add_pandas(
name="df",
)
self.__data_asset = self.__data_source.add_dataframe_asset(name="df_asset")
# batch definition
self.__batch_definition = self.__data_asset.add_batch_definition_whole_dataframe(
"batch definition"
)
self.__batch = self.__batch_definition.get_batch(batch_parameters={"dataframe": self.__df})
self.__suite = self.__context.suites.add(
ge.core.expectation_suite.ExpectationSuite(
name="Dataset expectation suite",
)
)
logger.info(f"Dataset loaded: {self.__dataset_conf['data_path']}")
def basic_stats(self):
"""
Get the basic statistics of the dataset
"""
print(self.__df.describe(include="all"))
def __get_unmeaningful_body_length(self):
"""
Get the maximum length that a body needs to have to be not considered as unmeaningful
"""
# get the 3% quantile of the body length distribution
lengths = self.__df[self.__body_col].fillna("").astype(str).str.len()
q_vals = lengths.quantile([0.03])
unmeaningful_body_length = int(q_vals.iloc[0])
logger.info(
f"Maximum body length to be considered unmeaningful: {unmeaningful_body_length}"
)
return unmeaningful_body_length
def __clean_text(
self,
text,
lower=False,
remove_html=False,
remove_urls=False, # si
remove_code_blocks=False, # forse
replace_digits=False,
remove_paths=False, # si
remove_hex=False,
url_token="<URL>",
digits_token="<NUM>",
path_token="<PATH>",
hex_token="<HEX>",
):
"""
Cleans the input text by removing the specificed components as input to this function
Args:
text (str): The text to be cleaned
lower (bool): Whether to convert the text to lowercase
remove_html (bool): Whether to remove HTML tags
remove_urls (bool): Whether to remove URLs
remove_code_blocks (bool): Whether to remove code blocks
replace_digits (bool): Whether to replace digits with a token
remove_paths (bool): Whether to remove paths
remove_hex (bool): Whether to remove hex values
url_token (str): The token to replace URLs with
digits_token (str): The token to replace digits with
path_token (str): The token to replace paths with
hex_token (str): The token to replace hex values with
Returns:
str: The cleaned text
"""
if text is None:
return ""
s = str(text)
if remove_html:
s = html.unescape(s)
# remove simple html tags
s = re.sub(r"<[^>]+>", " ", s)
if remove_code_blocks:
# remove fenced code blocks ```...``` and inline `...`
s = re.sub(r"```[\s\S]*?```", " ", s)
s = re.sub(r"`[^`]+`", " ", s)
if remove_urls:
s = re.sub(r"https?://\S+|www\.\S+", url_token, s)
if replace_digits:
s = re.sub(r"\d+", f" {digits_token} ", s)
if remove_hex:
# hex with 0x prefix, e.g. 0x1a2f
s = re.sub(r"\b0x[0-9a-fA-F]+\b", hex_token, s)
if remove_paths:
# Windows drive paths (e.g. C:\path\to\file.txt) and UNC paths (\\server\share\file)
s = re.sub(r"\b[A-Za-z]:\\(?:[^\\\s]+\\)*[^\\\s]*\b", path_token, s)
s = re.sub(r"\\\\(?:[^\\\s]+\\)*[^\\\s]*\b", path_token, s)
# Relative paths: ./file, ../dir/file, .\file, ..\dir\file, ~/something
s = re.sub(r"(?<!\S)(?:\./|\.\./|\.\\|(?:\.\.\\)|~/)[^\s]+", path_token, s)
# Unix absolute paths (e.g. /usr/bin/file) — require at least one non-slash segment
s = re.sub(r"(?<!\S)/(?:[^/\s]+/)*[^/\s]+", path_token, s)
# Repo-style or long slash-separated paths without leading slash (e.g. home/travis/build/.../file.c)
# require at least two '/' to avoid matching ordinary text with a single slash
s = re.sub(r"(?<!\S)(?:[A-Za-z0-9_.~-]+/(?:[^/\s]+/){1,}[^/\s]+)", path_token, s)
# Fallback: file-like tokens with common extensions
s = re.sub(
r"(?<!\S)[\w\-/\\]+?\.(?:py|txt|md|log|json|yml|yaml|cfg|ini|csv|sql|java|cpp|c|h|js|ts|rb|go)(?=\s|$)",
path_token,
s,
)
# collapse whitespace and strip
# s = re.sub(r"\s+", " ", s).strip()
if lower:
s = s.lower()
return s
def __check_columns_type_integrity_expectation(self):
"""
Adds the check for column type integrity to the GE suite
"""
# check if all columns are of the same type
for column in self.__df.columns:
most_frequent_type_in_column = self.__df[column].apply(type).mode()[0]
logger.info(f"Most frequent type in column {column}: {most_frequent_type_in_column}")
expectation = ge.expectations.ExpectColumnValuesToBeOfType(
column=column, type_=most_frequent_type_in_column.__name__, meta={"tag":"type_integrity_column"+column}
)
self.__suite.add_expectation(expectation)
logger.info("Columns type integrity checks set")
def __check_missing_values_expectation(self):
"""
Adds the check for missing values in the dataset columns to the GE suite
"""
# check if all columns have no missing values
for column in self.__df.columns:
expectation = ge.expectations.ExpectColumnValuesToNotBeNull(column=column, meta={"tag":"missing_values_column"+column})
self.__suite.add_expectation(expectation)
logger.info("Missing values checks set")
def __check_duplicates_expectation(self):
"""
Adds the check for duplicated rows in the dataset to the GE suite
"""
# check if there are no duplicated rows
expectation = ge.expectations.ExpectCompoundColumnsToBeUnique(
column_list=list(self.__df.columns),
meta={"tag":"duplicates"}
)
self.__suite.add_expectation(expectation)
logger.info("Duplicates checks set")
def __check_unmeaningful_bodies_expectation(self):
"""
Adds the check for unmeaningful bodies in the dataset to the GE suite
"""
# check if there are unmeaningful bodies
# an unmeaningful body is a body that has a length less that the 3% quantile of the body length distribution
if not self.__unmeaningful_body_length:
self.__unmeaningful_body_length = self.__get_unmeaningful_body_length()
expectation = ge.expectations.ExpectColumnValueLengthsToBeBetween(
column=self.__body_col, min_value=self.__unmeaningful_body_length, max_value=None, meta={"tag":"unmeaningful_bodies"}
)
self.__suite.add_expectation(expectation)
logger.info("Unmeaningful bodies checks set")
def check_dataset(self, checks, save_report=False, report_path="Raw data"):
"""
Checks the dataset integrity and returns the GE suite result
Args:
checks (list): List of checks to performed. Possible values are:
- "column_types" checks if all the columns' values are of the same type
- "missing_values" checks if there are missing values in the dataset
- "duplicates" checks if there are duplicated rows in the dataset
- "unmeaningful_bodies" checks if there are unmeaningful bodies in the dataset
"""
if "column_types" in checks:
self.__check_columns_type_integrity_expectation()
if "missing_values" in checks:
self.__check_missing_values_expectation()
if "duplicates" in checks:
self.__check_duplicates_expectation()
if "unmeaningful_bodies" in checks:
self.__check_unmeaningful_bodies_expectation()
# run the suite
if not self.__validation_definition:
self.__validation_definition = self.__context.validation_definitions.add(
ge.core.validation_definition.ValidationDefinition(
name="Validation definition",
data=self.__batch_definition,
suite=self.__suite,
)
)
res = self.__validation_definition.run(
batch_parameters={"dataframe": self.__df},
result_format={
"result_format": "COMPLETE",
"unexpected_index_column_names": [self.__body_col],
"return_unexpected_index_query": True,
},
)
# save the results on html file
if save_report:
document_model = ge.render.renderer.ValidationResultsPageRenderer().render(res)
html_content = ge.render.view.DefaultJinjaPageView().render(document_model)
with open("../reports/Great Expectation Results/"+report_path+"/"+self.__dataset_name+"_results.html", "w", encoding="utf-8") as f:
f.write(html_content)
results = [
{
"success": r["success"],
"config": r["expectation_config"],
"num_of_failed_rows": r["result"]["unexpected_count"]
if "unexpected_count" in r["result"].keys()
else None,
"percent_of_failed_rows": r["result"]["unexpected_percent"]
if "unexpected_percent" in r["result"].keys()
else None,
}
for r in res["results"]
]
logger.info("Dataset checking completed!")
return results
def automated_cleaning(self):
"""
Automatically cleans the dataset by running the cleaning functions in the following order:
- clean_columns_integrity
- clean_missing_values
- clean_duplicates
- clean_bodies
- clean_unmeaningful_bodies
"""
self.clean_columns_integrity()
self.clean_missing_values()
self.clean_duplicates()
self.clean_bodies()
self.clean_unmeaningful_bodies()
def clean_columns_integrity(self):
"""
Cleans the dataset columns by removing rows of which values types differs from the type of the most values in the columns
"""
logger.info("Solving columns integrity issues...")
# get the most common type in the dataset, column by column
for column in self.__df.columns:
most_frequent_type_in_column = self.__df[column].apply(type).mode()[0]
# remove rows of which values (for the curent column) types differs from the type of the most values in the column
self.__df = self.__df[
self.__df[column].apply(lambda x: type(x) is most_frequent_type_in_column)
]
logger.info("Columns integrity issues solved!")
logger.info(
"Number of samples after cleaning columns integrity: {}".format(self.__df.shape[0])
)
def clean_missing_values(self):
"""
Cleans the dataset by removing rows with missing values and empty body strings
"""
logger.info("Cleaning missing values...")
# remove missing values and empty body strings
str_cols = self.__df.select_dtypes(include=["object"]).columns
self.__df = self.__df.dropna().reset_index(drop=True)
self.__df = self.__df[self.__df[str_cols].apply(lambda col: (col != "").all(), axis=1)]
logger.info("Missing values cleaned!")
logger.info(
"Number of samples after cleaning missing values: {}".format(self.__df.shape[0])
)
def clean_duplicates(self):
"""
Cleans the dataset by removing duplicate rows
"""
logger.info("Cleaning duplicates...")
# remove duplicate rows
self.__df = self.__df.drop_duplicates(subset=self.__df.columns, keep="first")
logger.info("Duplicates cleaned!")
logger.info("Number of samples after cleaning duplicates: {}".format(self.__df.shape[0]))
def clean_unmeaningful_bodies(self):
"""
Cleans the dataset by removing unmeaningful bodies
"""
logger.info("Cleaning unmeaningful bodies...")
# remove unmeaningful bodies
if not self.__unmeaningful_body_length:
self.__unmeaningful_body_length = self.__get_unmeaningful_body_length()
self.__df = self.__df[
self.__df[self.__body_col]
.astype(str)
.apply(lambda b: len(b) > self.__unmeaningful_body_length)
]
logger.info("Unmeaningful bodies cleaned!")
logger.info(
"Number of samples after cleaning unmeaningful bodies: {}".format(self.__df.shape[0])
)
def clean_bodies(self):
"""
Cleans the dataset by cleaning the bodies remving HTML tags, URLs, Paths and Hex values
"""
logger.info("Cleaning bodies...")
# clean the bodies
self.__df[self.__body_col] = self.__df[self.__body_col].map(
lambda x: self.__clean_text(
x, remove_html=True, remove_urls=True, remove_paths=True, remove_hex=True
)
)
logger.info("Bodies cleaned!")
logger.info("Number of samples after cleaning bodies: {}".format(self.__df.shape[0]))
def get_dataset(self):
"""
Returns the dataset
"""
return self.__df
def save_dataset(self, save_path=INTERIM_DATA_DIR):
"""
Saves the dataset to the processed data folder
"""
self.__df.to_csv(save_path / f"{self.__dataset_conf['data_path']}", index=False)
logger.info(f"Dataset saved: {self.__dataset_conf['data_path']}")
|