sanchit-gandhi
commited on
Commit
·
eed20cf
1
Parent(s):
0a74dbb
repeated n-grams
Browse files- app.py +12 -4
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -8,6 +8,7 @@ import gradio as gr
|
|
| 8 |
from datasets import load_dataset
|
| 9 |
import pandas as pd
|
| 10 |
from jiwer import process_words, wer_default
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
class Action(Enum):
|
|
@@ -63,7 +64,7 @@ target_dtype = np.int16
|
|
| 63 |
max_range = np.iinfo(target_dtype).max
|
| 64 |
|
| 65 |
|
| 66 |
-
def get_visualisation(idx, model="large-v2", round_dp=2):
|
| 67 |
idx -= 1
|
| 68 |
audio = dataset[idx]["audio"]
|
| 69 |
array = (audio["array"] * max_range).astype(np.int16)
|
|
@@ -83,12 +84,19 @@ def get_visualisation(idx, model="large-v2", round_dp=2):
|
|
| 83 |
100 * wer_output.insertions / len(wer_output.references[0]), round_dp
|
| 84 |
)
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
diff = compare_string(text1, text2)
|
| 89 |
full_text = style_text(diff)
|
| 90 |
|
| 91 |
-
return (sampling_rate, array), wer_percentage, ier_percentage,
|
| 92 |
|
| 93 |
|
| 94 |
def get_side_by_side_visualisation(idx):
|
|
@@ -136,7 +144,7 @@ if __name__ == "__main__":
|
|
| 136 |
"Model",
|
| 137 |
"Word Error Rate (WER)",
|
| 138 |
"Insertion Error Rate (IER)",
|
| 139 |
-
"
|
| 140 |
],
|
| 141 |
height=1000,
|
| 142 |
)
|
|
|
|
| 8 |
from datasets import load_dataset
|
| 9 |
import pandas as pd
|
| 10 |
from jiwer import process_words, wer_default
|
| 11 |
+
from nltk import ngrams
|
| 12 |
|
| 13 |
|
| 14 |
class Action(Enum):
|
|
|
|
| 64 |
max_range = np.iinfo(target_dtype).max
|
| 65 |
|
| 66 |
|
| 67 |
+
def get_visualisation(idx, model="large-v2", round_dp=2, ngram_degree=5):
|
| 68 |
idx -= 1
|
| 69 |
audio = dataset[idx]["audio"]
|
| 70 |
array = (audio["array"] * max_range).astype(np.int16)
|
|
|
|
| 84 |
100 * wer_output.insertions / len(wer_output.references[0]), round_dp
|
| 85 |
)
|
| 86 |
|
| 87 |
+
all_ngrams = list(ngrams(text2.split(), ngram_degree))
|
| 88 |
+
|
| 89 |
+
unique_ngrams = []
|
| 90 |
+
for ngram in all_ngrams:
|
| 91 |
+
if ngram not in unique_ngrams:
|
| 92 |
+
unique_ngrams.append(ngram)
|
| 93 |
+
|
| 94 |
+
repeated_ngrams = len(all_ngrams) - len(unique_ngrams)
|
| 95 |
|
| 96 |
diff = compare_string(text1, text2)
|
| 97 |
full_text = style_text(diff)
|
| 98 |
|
| 99 |
+
return (sampling_rate, array), wer_percentage, ier_percentage, repeated_ngrams, full_text
|
| 100 |
|
| 101 |
|
| 102 |
def get_side_by_side_visualisation(idx):
|
|
|
|
| 144 |
"Model",
|
| 145 |
"Word Error Rate (WER)",
|
| 146 |
"Insertion Error Rate (IER)",
|
| 147 |
+
"Repeated 5-grams",
|
| 148 |
],
|
| 149 |
height=1000,
|
| 150 |
)
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
pandas
|
| 2 |
datasets[audio]
|
| 3 |
-
jiwer
|
|
|
|
|
|
| 1 |
pandas
|
| 2 |
datasets[audio]
|
| 3 |
+
jiwer
|
| 4 |
+
nltk
|