Spaces:
Running
Running
File size: 7,460 Bytes
a360e3c 4aef500 a360e3c 4aef500 6bf10a4 a360e3c 4aef500 2bcd76f a360e3c c27c631 a360e3c c27c631 a360e3c f603f74 2bcd76f a360e3c c27c631 2bcd76f a360e3c 2bcd76f a360e3c 2bcd76f c27c631 a360e3c cd66976 6bf10a4 a360e3c f603f74 a360e3c 6e47eb5 a360e3c 6bf10a4 a360e3c 4aef500 6bf10a4 a360e3c 6e47eb5 4aef500 6bf10a4 a360e3c 4fd7636 4aef500 6bf10a4 a360e3c 4aef500 a360e3c 2bcd76f a360e3c 4aef500 a360e3c 4aef500 a360e3c 4aef500 6bf10a4 a360e3c c27c631 a360e3c 4aef500 a360e3c 4aef500 a360e3c 4aef500 a360e3c 323893f 6bf10a4 4aef500 a360e3c 4aef500 a360e3c 4aef500 a360e3c 4aef500 a360e3c 6bf10a4 4aef500 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import logging
import os
from typing import Any, Dict, List
import duckdb
import gradio as gr
import lancedb
import pandas as pd
import pyarrow as pa
from dotenv import load_dotenv
from src.client import LLMChain, embed_client
from src.pipelines import SQLPipeline
load_dotenv()
# ========ENV's========
MD_TOKEN = os.getenv("MD_TOKEN")
HF_TOKEN = os.getenv("HF_TOKEN")
conn = duckdb.connect(f"md:my_db?motherduck_token={MD_TOKEN}", read_only=True)
LEVEL = "INFO" if not os.getenv("ENV") == "PROD" else "WARNING"
EMB_URL = os.getenv("EMB_URL")
EMB_MODEL = os.getenv("EMB_MODEL")
TAB_LINES = 8
# =====================
logging.basicConfig(
level=getattr(logging, LEVEL, logging.INFO),
format="%(asctime)s %(levelname)s %(name)s: %(message)s",
)
logger = logging.getLogger(__name__)
pipe = SQLPipeline(duckdb=conn, chain=LLMChain())
def _setup_lancedb() -> lancedb.table.Table:
lance_db = lancedb.connect(
uri=os.getenv("lancedb_uri"),
api_key=os.getenv("lancedb_api_key"),
region=os.getenv("lancedb_region"),
)
lance_schema = pa.schema(
[pa.field("vector", pa.list_(pa.float32())), pa.field("sql-query", pa.utf8())]
)
try:
table = lance_db.create_table(name="SQL-Queries", schema=lance_schema)
except Exception:
table = lance_db.open_table(name="SQL-Queries")
return table
lance_table = _setup_lancedb()
def get_schemas() -> List:
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
def get_tables(schema_name: str) -> List:
tables = conn.execute(
f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'"
).fetchall()
return [table[0] for table in tables]
def update_tables(schema_name: str):
tables = get_tables(schema_name)
return gr.update(choices=tables)
def get_table_schema(table: str) -> str:
result = conn.sql(
f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';"
).df()
ddl_create = result.iloc[0, 0]
parent_database = result.iloc[0, 1]
schema_name = result.iloc[0, 2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return ddl_create
def run_pipeline(table: str, query_input: str) -> Dict[str, Any]:
if table is None:
return _error_response(
query_input=query_input, message="❌ Please select a table/schema."
)
schema = ""
try:
schema = get_table_schema(table=table)
sql, df = pipe.try_sql_with_retries(
user_question=query_input,
context=schema,
)
if not sql or df is None:
return _error_response(
query_input=query_input,
schema=schema,
message="❌ Unable to generate SQL from the input text.",
)
except Exception as exc:
logger.exception("Pipeline execution failed")
return _error_response(
query_input=query_input, schema=schema, message=f"❌ Pipeline error: {exc}"
)
try:
sql_str = f"{query_input}\n{sql.get('sql_query', '')}"
embeddings = embed_query(sql_str)
log2lancedb(embeddings, sql_str)
except Exception as exc:
logger.warning("Embedding/logging failed: %s", exc)
return {
table_schema: schema,
input_prompt: query_input,
generated_query: sql.get("sql_query", ""),
result_output: df,
}
def _error_response(
*,
query_input: str,
message: str,
schema: str = "",
) -> Dict[str, Any]:
return {
table_schema: schema,
input_prompt: query_input,
generated_query: "",
result_output: pd.DataFrame([{"error": message}]),
}
def embed_query(data: str) -> List:
logger.info(f"Creating Emebeddings {data}")
try:
results = embed_client.feature_extraction(text=data, model=EMB_MODEL)
return results.tolist()
except Exception as e:
logger.error(f"Unable to Generate embedding for the given query: {e}")
return []
def log2lancedb(embeddings: List, sql_query: str) -> None:
data = [{"sql-query": sql_query, "vector": embeddings}]
lance_table.add(data)
logger.info("Added to Lance DB.")
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css
) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>Datajoi SQL Agent</strong>
<br>
<span style='font-size: 20px;'>Generate and Run SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1, variant="panel"):
schema_dropdown = gr.Dropdown(
choices=get_schemas(), label="Select Schema", interactive=True
)
tables_dropdown = gr.Dropdown(
choices=[], label="Available Tables", value=None
)
with gr.Column(scale=2):
query_input = gr.Textbox(
lines=5, label="Text Query", placeholder="Enter your text query here..."
)
with gr.Row():
with gr.Column(scale=7):
pass
with gr.Column(scale=1):
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Result"):
result_output = gr.DataFrame(
label="Query Results", value=[], interactive=False
)
with gr.Tab("SQL Query"):
generated_query = gr.Textbox(
lines=TAB_LINES,
label="Generated SQL Query",
value="",
interactive=False,
)
with gr.Tab("Prompt"):
input_prompt = gr.Textbox(
lines=TAB_LINES,
label="Input Prompt",
value="",
interactive=False,
)
with gr.Tab("Schema"):
table_schema = gr.Textbox(
lines=TAB_LINES,
label="Table Schema",
value="",
interactive=False,
)
schema_dropdown.change(
update_tables, inputs=schema_dropdown, outputs=tables_dropdown
)
generate_query_button.click(
run_pipeline,
inputs=[tables_dropdown, query_input],
outputs=[table_schema, input_prompt, generated_query, result_output],
)
if __name__ == "__main__":
demo.launch()
|