File size: 7,460 Bytes
a360e3c
4aef500
a360e3c
 
4aef500
6bf10a4
a360e3c
4aef500
2bcd76f
a360e3c
c27c631
a360e3c
 
c27c631
a360e3c
f603f74
2bcd76f
a360e3c
 
 
 
 
 
 
 
 
c27c631
2bcd76f
a360e3c
 
 
 
 
2bcd76f
 
a360e3c
2bcd76f
c27c631
a360e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
cd66976
6bf10a4
a360e3c
f603f74
 
a360e3c
6e47eb5
 
 
 
 
a360e3c
 
6bf10a4
a360e3c
 
 
 
4aef500
6bf10a4
a360e3c
 
6e47eb5
4aef500
6bf10a4
a360e3c
 
 
 
 
 
 
 
4fd7636
 
 
 
 
 
4aef500
6bf10a4
a360e3c
 
4aef500
a360e3c
 
 
 
 
2bcd76f
a360e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aef500
a360e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aef500
 
a360e3c
 
 
4aef500
6bf10a4
a360e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27c631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a360e3c
 
 
4aef500
a360e3c
4aef500
 
 
 
 
 
 
 
 
a360e3c
 
 
 
 
 
 
4aef500
 
a360e3c
 
 
323893f
 
 
 
 
6bf10a4
4aef500
 
a360e3c
 
 
4aef500
a360e3c
 
 
 
 
 
4aef500
a360e3c
 
 
 
 
 
4aef500
a360e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf10a4
 
4aef500
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import logging
import os
from typing import Any, Dict, List

import duckdb
import gradio as gr
import lancedb
import pandas as pd
import pyarrow as pa
from dotenv import load_dotenv

from src.client import LLMChain, embed_client
from src.pipelines import SQLPipeline

load_dotenv()


# ========ENV's========
MD_TOKEN = os.getenv("MD_TOKEN")
HF_TOKEN = os.getenv("HF_TOKEN")
conn = duckdb.connect(f"md:my_db?motherduck_token={MD_TOKEN}", read_only=True)
LEVEL = "INFO" if not os.getenv("ENV") == "PROD" else "WARNING"
EMB_URL = os.getenv("EMB_URL")
EMB_MODEL = os.getenv("EMB_MODEL")
TAB_LINES = 8
# =====================


logging.basicConfig(
    level=getattr(logging, LEVEL, logging.INFO),
    format="%(asctime)s %(levelname)s %(name)s: %(message)s",
)
logger = logging.getLogger(__name__)


pipe = SQLPipeline(duckdb=conn, chain=LLMChain())


def _setup_lancedb() -> lancedb.table.Table:
    lance_db = lancedb.connect(
        uri=os.getenv("lancedb_uri"),
        api_key=os.getenv("lancedb_api_key"),
        region=os.getenv("lancedb_region"),
    )
    lance_schema = pa.schema(
        [pa.field("vector", pa.list_(pa.float32())), pa.field("sql-query", pa.utf8())]
    )
    try:
        table = lance_db.create_table(name="SQL-Queries", schema=lance_schema)
    except Exception:
        table = lance_db.open_table(name="SQL-Queries")
    return table


lance_table = _setup_lancedb()


def get_schemas() -> List:
    schemas = conn.execute("""
    SELECT DISTINCT schema_name 
    FROM information_schema.schemata 
    WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
    """).fetchall()
    return [item[0] for item in schemas]


def get_tables(schema_name: str) -> List:
    tables = conn.execute(
        f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'"
    ).fetchall()
    return [table[0] for table in tables]


def update_tables(schema_name: str):
    tables = get_tables(schema_name)
    return gr.update(choices=tables)


def get_table_schema(table: str) -> str:
    result = conn.sql(
        f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';"
    ).df()
    ddl_create = result.iloc[0, 0]
    parent_database = result.iloc[0, 1]
    schema_name = result.iloc[0, 2]
    full_path = f"{parent_database}.{schema_name}.{table}"
    if schema_name != "main":
        old_path = f"{schema_name}.{table}"
    else:
        old_path = table
    ddl_create = ddl_create.replace(old_path, full_path)
    return ddl_create


def run_pipeline(table: str, query_input: str) -> Dict[str, Any]:
    if table is None:
        return _error_response(
            query_input=query_input, message="❌ Please select a table/schema."
        )

    schema = ""
    try:
        schema = get_table_schema(table=table)

        sql, df = pipe.try_sql_with_retries(
            user_question=query_input,
            context=schema,
        )

        if not sql or df is None:
            return _error_response(
                query_input=query_input,
                schema=schema,
                message="❌ Unable to generate SQL from the input text.",
            )

    except Exception as exc:
        logger.exception("Pipeline execution failed")
        return _error_response(
            query_input=query_input, schema=schema, message=f"❌ Pipeline error: {exc}"
        )

    try:
        sql_str = f"{query_input}\n{sql.get('sql_query', '')}"
        embeddings = embed_query(sql_str)
        log2lancedb(embeddings, sql_str)

    except Exception as exc:
        logger.warning("Embedding/logging failed: %s", exc)

    return {
        table_schema: schema,
        input_prompt: query_input,
        generated_query: sql.get("sql_query", ""),
        result_output: df,
    }


def _error_response(
    *,
    query_input: str,
    message: str,
    schema: str = "",
) -> Dict[str, Any]:
    return {
        table_schema: schema,
        input_prompt: query_input,
        generated_query: "",
        result_output: pd.DataFrame([{"error": message}]),
    }


def embed_query(data: str) -> List:
    logger.info(f"Creating Emebeddings {data}")
    try:
        results = embed_client.feature_extraction(text=data, model=EMB_MODEL)
        return results.tolist()
    except Exception as e:
        logger.error(f"Unable to Generate embedding for the given query: {e}")
    return []


def log2lancedb(embeddings: List, sql_query: str) -> None:
    data = [{"sql-query": sql_query, "vector": embeddings}]
    lance_table.add(data)
    logger.info("Added to Lance DB.")


custom_css = """
.gradio-container {
    background-color: #f0f4f8;
}
.logo {
    max-width: 200px;
    margin: 20px auto;
    display: block;
}
.gr-button {
    background-color: #4a90e2 !important;
}
.gr-button:hover {
    background-color: #3a7bc8 !important;
}
"""

with gr.Blocks(
    theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css
) as demo:
    gr.Image("logo.png", label=None, show_label=False, container=False, height=100)

    gr.Markdown("""
    <div style='text-align: center;'>
    <strong style='font-size: 36px;'>Datajoi SQL Agent</strong>
    <br>
    <span style='font-size: 20px;'>Generate and Run SQL queries based on a given text for the dataset.</span>
    </div>
    """)

    with gr.Row():
        with gr.Column(scale=1, variant="panel"):
            schema_dropdown = gr.Dropdown(
                choices=get_schemas(), label="Select Schema", interactive=True
            )
            tables_dropdown = gr.Dropdown(
                choices=[], label="Available Tables", value=None
            )

        with gr.Column(scale=2):
            query_input = gr.Textbox(
                lines=5, label="Text Query", placeholder="Enter your text query here..."
            )
            with gr.Row():
                with gr.Column(scale=7):
                    pass
                with gr.Column(scale=1):
                    generate_query_button = gr.Button("Run Query", variant="primary")

            with gr.Tabs():
                with gr.Tab("Result"):
                    result_output = gr.DataFrame(
                        label="Query Results", value=[], interactive=False
                    )
                with gr.Tab("SQL Query"):
                    generated_query = gr.Textbox(
                        lines=TAB_LINES,
                        label="Generated SQL Query",
                        value="",
                        interactive=False,
                    )
                with gr.Tab("Prompt"):
                    input_prompt = gr.Textbox(
                        lines=TAB_LINES,
                        label="Input Prompt",
                        value="",
                        interactive=False,
                    )
                with gr.Tab("Schema"):
                    table_schema = gr.Textbox(
                        lines=TAB_LINES,
                        label="Table Schema",
                        value="",
                        interactive=False,
                    )

        schema_dropdown.change(
            update_tables, inputs=schema_dropdown, outputs=tables_dropdown
        )
        generate_query_button.click(
            run_pipeline,
            inputs=[tables_dropdown, query_input],
            outputs=[table_schema, input_prompt, generated_query, result_output],
        )

if __name__ == "__main__":
    demo.launch()