Spaces:
Running
Running
| import gradio as gr | |
| import librosa | |
| from transformers import pipeline | |
| pipe = pipeline("audio-classification", model="lewtun/distilhubert-finetuned-gtzan") | |
| def classify_audio(filepath): | |
| audio, sampling_rate = librosa.load(filepath, sr=16_000) | |
| preds = pipe(audio) | |
| outputs = {} | |
| for p in preds: | |
| outputs[p["label"]] = p["score"] | |
| return outputs | |
| label = gr.outputs.Label() | |
| demo = gr.Interface(fn=classify_audio, inputs=gr.Audio(type="filepath"), outputs=label, examples=[["song1.ogg"], ["song2.ogg"], ["song3.ogg"], ["song4.ogg"]],) | |
| demo.launch() |