Update app.py
Browse files
app.py
CHANGED
|
@@ -1,73 +1,55 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException, Depends
|
| 2 |
from fastapi.security import HTTPBearer
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import GPT2LMHeadModel, GPT2TokenizerFast, GPT2Config
|
| 5 |
import torch
|
| 6 |
-
import os
|
| 7 |
import asyncio
|
| 8 |
from contextlib import asynccontextmanager
|
| 9 |
-
import logging
|
| 10 |
-
from io import BytesIO
|
| 11 |
-
import docx
|
| 12 |
-
import fitz # PyMuPDF
|
| 13 |
-
|
| 14 |
-
# Load environment variables
|
| 15 |
-
from dotenv import load_dotenv
|
| 16 |
-
load_dotenv()
|
| 17 |
-
|
| 18 |
-
SECRET_TOKEN = os.getenv("SECRET_TOKEN")
|
| 19 |
-
bearer_scheme = HTTPBearer()
|
| 20 |
-
# Ai-Text-Detector
|
| 21 |
-
MODEL_PATH = "./Ai-Text-Detector/model"
|
| 22 |
-
WEIGHTS_PATH = "./Ai-Text-Detector/model_weights.pth"
|
| 23 |
|
| 24 |
# FastAPI app instance
|
| 25 |
app = FastAPI()
|
| 26 |
|
| 27 |
# Global model and tokenizer variables
|
| 28 |
model, tokenizer = None, None
|
| 29 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
|
| 34 |
-
#
|
| 35 |
def load_model():
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
try:
|
| 38 |
-
tokenizer = GPT2TokenizerFast.from_pretrained(
|
| 39 |
-
config = GPT2Config.from_pretrained(
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
model_instance.eval()
|
| 44 |
-
model, tokenizer = model_instance, tokenizer
|
| 45 |
-
logging.info("Model loaded successfully.")
|
| 46 |
except Exception as e:
|
| 47 |
-
logging.error(f"Error loading model: {str(e)}")
|
| 48 |
raise RuntimeError(f"Error loading model: {str(e)}")
|
| 49 |
|
|
|
|
|
|
|
| 50 |
# Load model on app startup
|
| 51 |
@asynccontextmanager
|
| 52 |
async def lifespan(app: FastAPI):
|
| 53 |
-
|
|
|
|
| 54 |
yield
|
| 55 |
|
| 56 |
-
# Attach
|
| 57 |
app = FastAPI(lifespan=lifespan)
|
| 58 |
|
| 59 |
-
# Input schema
|
| 60 |
class TextInput(BaseModel):
|
| 61 |
text: str
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
def classify_text(
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 69 |
-
input_ids = inputs["input_ids"].to(device)
|
| 70 |
-
attention_mask = inputs["attention_mask"].to(device)
|
| 71 |
|
| 72 |
with torch.no_grad():
|
| 73 |
outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)
|
|
@@ -75,91 +57,34 @@ def classify_text(text: str):
|
|
| 75 |
perplexity = torch.exp(loss).item()
|
| 76 |
|
| 77 |
if perplexity < 60:
|
| 78 |
-
|
| 79 |
elif perplexity < 80:
|
| 80 |
-
|
| 81 |
else:
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# POST route to analyze text with Bearer token
|
| 85 |
@app.post("/analyze")
|
| 86 |
async def analyze_text(data: TextInput, token: str = Depends(bearer_scheme)):
|
| 87 |
-
|
| 88 |
-
if token.credentials != SECRET_TOKEN:
|
| 89 |
-
raise HTTPException(status_code=401, detail="Invalid token")
|
| 90 |
-
|
| 91 |
-
text = data.text.strip()
|
| 92 |
|
| 93 |
-
|
| 94 |
-
if not text:
|
| 95 |
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 96 |
|
| 97 |
-
if
|
|
|
|
|
|
|
| 98 |
raise HTTPException(status_code=400, detail="Text must contain at least two words")
|
| 99 |
|
| 100 |
-
try:
|
| 101 |
-
# Classify text
|
| 102 |
-
label, perplexity = await asyncio.to_thread(classify_text, text)
|
| 103 |
-
return {"result": label, "perplexity": round(perplexity, 2)}
|
| 104 |
-
except Exception as e:
|
| 105 |
-
logging.error(f"Error processing text: {str(e)}")
|
| 106 |
-
raise HTTPException(status_code=500, detail="Model processing error")
|
| 107 |
-
|
| 108 |
-
# Function to parse .docx files
|
| 109 |
-
def parse_docx(file: BytesIO):
|
| 110 |
-
doc = docx.Document(file)
|
| 111 |
-
text = ""
|
| 112 |
-
for para in doc.paragraphs:
|
| 113 |
-
text += para.text + "\n"
|
| 114 |
-
return text
|
| 115 |
-
|
| 116 |
-
# Function to parse .pdf files
|
| 117 |
-
def parse_pdf(file: BytesIO):
|
| 118 |
-
try:
|
| 119 |
-
doc = fitz.open(stream=file, filetype="pdf")
|
| 120 |
-
text = ""
|
| 121 |
-
for page_num in range(doc.page_count):
|
| 122 |
-
page = doc.load_page(page_num)
|
| 123 |
-
text += page.get_text()
|
| 124 |
-
return text
|
| 125 |
-
except Exception as e:
|
| 126 |
-
logging.error(f"Error while processing PDF: {str(e)}")
|
| 127 |
-
raise HTTPException(status_code=500, detail="Error processing PDF file")
|
| 128 |
-
|
| 129 |
-
# Function to parse .txt files
|
| 130 |
-
def parse_txt(file: BytesIO):
|
| 131 |
-
return file.read().decode("utf-8")
|
| 132 |
-
|
| 133 |
-
# POST route to upload files and analyze content
|
| 134 |
-
@app.post("/upload/")
|
| 135 |
-
async def upload_file(file: UploadFile = File(...), token: str = Depends(bearer_scheme)):
|
| 136 |
-
file_contents = None
|
| 137 |
-
try:
|
| 138 |
-
if file.content_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
|
| 139 |
-
file_contents = parse_docx(BytesIO(await file.read()))
|
| 140 |
-
elif file.content_type == 'application/pdf':
|
| 141 |
-
file_contents = parse_pdf(BytesIO(await file.read()))
|
| 142 |
-
elif file.content_type == 'text/plain':
|
| 143 |
-
file_contents = parse_txt(BytesIO(await file.read()))
|
| 144 |
-
else:
|
| 145 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .docx, .pdf, and .txt are allowed.")
|
| 146 |
-
|
| 147 |
-
logging.debug(f"Extracted Text from {file.filename}:\n{file_contents}")
|
| 148 |
-
|
| 149 |
-
# Check if the text length exceeds 10,000 characters
|
| 150 |
-
if len(file_contents) > 10000:
|
| 151 |
-
return {"message": "File contains more than 10,000 characters."}
|
| 152 |
-
|
| 153 |
-
# Clean the text by removing newline and tab characters
|
| 154 |
-
cleaned_text = file_contents.replace("\n", "").replace("\t", "")
|
| 155 |
-
|
| 156 |
-
# Analyze the cleaned text
|
| 157 |
-
label, perplexity = await asyncio.to_thread(classify_text, cleaned_text)
|
| 158 |
-
return {"result": label, "perplexity": round(perplexity, 2)}
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
# Health check route
|
| 165 |
@app.get("/health")
|
|
@@ -170,7 +95,7 @@ async def health_check():
|
|
| 170 |
@app.get("/")
|
| 171 |
def index():
|
| 172 |
return {
|
| 173 |
-
"message": "FastAPI
|
| 174 |
-
"
|
| 175 |
-
|
| 176 |
-
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, Depends
|
| 2 |
from fastapi.security import HTTPBearer
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import GPT2LMHeadModel, GPT2TokenizerFast, GPT2Config
|
| 5 |
import torch
|
|
|
|
| 6 |
import asyncio
|
| 7 |
from contextlib import asynccontextmanager
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# FastAPI app instance
|
| 10 |
app = FastAPI()
|
| 11 |
|
| 12 |
# Global model and tokenizer variables
|
| 13 |
model, tokenizer = None, None
|
|
|
|
| 14 |
|
| 15 |
+
# HTTPBearer instance for security
|
| 16 |
+
bearer_scheme = HTTPBearer()
|
| 17 |
|
| 18 |
+
# Function to load model and tokenizer
|
| 19 |
def load_model():
|
| 20 |
+
model_path = "./Ai-Text-Detector/model"
|
| 21 |
+
weights_path = "./Ai-Text-Detector/model_weights.pth"
|
| 22 |
+
|
| 23 |
try:
|
| 24 |
+
tokenizer = GPT2TokenizerFast.from_pretrained(model_path)
|
| 25 |
+
config = GPT2Config.from_pretrained(model_path)
|
| 26 |
+
model = GPT2LMHeadModel(config)
|
| 27 |
+
model.load_state_dict(torch.load(weights_path, map_location=torch.device("cpu")))
|
| 28 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
| 29 |
except Exception as e:
|
|
|
|
| 30 |
raise RuntimeError(f"Error loading model: {str(e)}")
|
| 31 |
|
| 32 |
+
return model, tokenizer
|
| 33 |
+
|
| 34 |
# Load model on app startup
|
| 35 |
@asynccontextmanager
|
| 36 |
async def lifespan(app: FastAPI):
|
| 37 |
+
global model, tokenizer
|
| 38 |
+
model, tokenizer = load_model()
|
| 39 |
yield
|
| 40 |
|
| 41 |
+
# Attach startup loader
|
| 42 |
app = FastAPI(lifespan=lifespan)
|
| 43 |
|
| 44 |
+
# Input schema
|
| 45 |
class TextInput(BaseModel):
|
| 46 |
text: str
|
| 47 |
|
| 48 |
+
# Sync text classification
|
| 49 |
+
def classify_text(sentence: str):
|
| 50 |
+
inputs = tokenizer(sentence, return_tensors="pt", truncation=True, padding=True)
|
| 51 |
+
input_ids = inputs["input_ids"]
|
| 52 |
+
attention_mask = inputs["attention_mask"]
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
with torch.no_grad():
|
| 55 |
outputs = model(input_ids, attention_mask=attention_mask, labels=input_ids)
|
|
|
|
| 57 |
perplexity = torch.exp(loss).item()
|
| 58 |
|
| 59 |
if perplexity < 60:
|
| 60 |
+
result = "AI-generated"
|
| 61 |
elif perplexity < 80:
|
| 62 |
+
result = "Probably AI-generated"
|
| 63 |
else:
|
| 64 |
+
result = "Human-written"
|
| 65 |
+
|
| 66 |
+
return result, perplexity
|
| 67 |
|
| 68 |
# POST route to analyze text with Bearer token
|
| 69 |
@app.post("/analyze")
|
| 70 |
async def analyze_text(data: TextInput, token: str = Depends(bearer_scheme)):
|
| 71 |
+
user_input = data.text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
if not user_input:
|
|
|
|
| 74 |
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
| 75 |
|
| 76 |
+
# Check if there are at least two words
|
| 77 |
+
word_count = len(user_input.split())
|
| 78 |
+
if word_count < 2:
|
| 79 |
raise HTTPException(status_code=400, detail="Text must contain at least two words")
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
result, perplexity = await asyncio.to_thread(classify_text, user_input)
|
| 83 |
+
|
| 84 |
+
return {
|
| 85 |
+
"result": result,
|
| 86 |
+
"perplexity": round(perplexity, 2),
|
| 87 |
+
}
|
| 88 |
|
| 89 |
# Health check route
|
| 90 |
@app.get("/health")
|
|
|
|
| 95 |
@app.get("/")
|
| 96 |
def index():
|
| 97 |
return {
|
| 98 |
+
"message": "FastAPI API is up.",
|
| 99 |
+
"try": "/docs to test the API.",
|
| 100 |
+
"status": "OK"
|
| 101 |
+
}
|