Spaces:
Sleeping
Sleeping
| import os | |
| import asyncio | |
| import logging | |
| from io import BytesIO | |
| from fastapi import HTTPException, UploadFile, status, Depends | |
| from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials | |
| from .inferencer import classify_text | |
| from .preprocess import parse_docx, parse_pdf, parse_txt | |
| import spacy | |
| security = HTTPBearer() | |
| nlp = spacy.load("en_core_web_sm") | |
| # Verify Bearer token from Authorization header | |
| async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)): | |
| token = credentials.credentials | |
| expected_token = os.getenv("MY_SECRET_TOKEN") | |
| if token != expected_token: | |
| raise HTTPException( | |
| status_code=status.HTTP_403_FORBIDDEN, | |
| detail="Invalid or expired token" | |
| ) | |
| return token | |
| # Classify plain text input | |
| async def handle_text_analysis(text: str): | |
| text = text.strip() | |
| if not text or len(text.split()) < 10: | |
| raise HTTPException(status_code=400, detail="Text must contain at least 10 words") | |
| if len(text) > 10000: | |
| raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters") | |
| label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, text) | |
| return { | |
| "result": label, | |
| "perplexity": round(perplexity, 2), | |
| "ai_likelihood": ai_likelihood | |
| } | |
| # Extract text from uploaded files (.docx, .pdf, .txt) | |
| async def extract_file_contents(file: UploadFile) -> str: | |
| content = await file.read() | |
| file_stream = BytesIO(content) | |
| if file.content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
| return parse_docx(file_stream) | |
| elif file.content_type == "application/pdf": | |
| return parse_pdf(file_stream) | |
| elif file.content_type == "text/plain": | |
| return parse_txt(file_stream) | |
| else: | |
| raise HTTPException( | |
| status_code=415, | |
| detail="Invalid file type. Only .docx, .pdf and .txt are allowed." | |
| ) | |
| # Classify text from uploaded file | |
| async def handle_file_upload(file: UploadFile): | |
| try: | |
| file_contents = await extract_file_contents(file) | |
| if len(file_contents) > 10000: | |
| raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters") | |
| cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip() | |
| if not cleaned_text: | |
| raise HTTPException(status_code=404, detail="The file is empty or only contains whitespace.") | |
| label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, cleaned_text) | |
| return { | |
| "content": file_contents, | |
| "result": label, | |
| "perplexity": round(perplexity, 2), | |
| "ai_likelihood": ai_likelihood | |
| } | |
| except Exception as e: | |
| logging.error(f"Error processing file: {e}") | |
| raise HTTPException(status_code=500, detail="Error processing the file") | |
| async def handle_sentence_level_analysis(text: str): | |
| text = text.strip() | |
| if not text.endswith("."): | |
| text += "." | |
| if len(text) > 10000: | |
| raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters") | |
| doc = nlp(text) | |
| sentences = [sent.text.strip() for sent in doc.sents] | |
| results = [] | |
| for sentence in sentences: | |
| if not sentence: | |
| continue | |
| label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, sentence) | |
| results.append({ | |
| "sentence": sentence, | |
| "label": label, | |
| "perplexity": round(perplexity, 2), | |
| "ai_likelihood": ai_likelihood | |
| }) | |
| return {"analysis": results}# Analyze each sentence from uploaded file | |
| async def handle_file_sentence(file: UploadFile): | |
| try: | |
| file_contents = await extract_file_contents(file) | |
| if len(file_contents) > 10000: | |
| raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters") | |
| cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip() | |
| if not cleaned_text: | |
| raise HTTPException(status_code=404, detail="The file is empty or only contains whitespace.") | |
| result = await handle_sentence_level_analysis(cleaned_text) | |
| return { | |
| "content": file_contents, | |
| **result | |
| } | |
| except Exception as e: | |
| logging.error(f"Error processing file: {e}") | |
| raise HTTPException(status_code=500, detail="Error processing the file") | |
| def classify(text: str): | |
| return classify_text(text) | |