# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved import math from typing import Optional import torch from torch import nn class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats, temperature: int = 10000, normalize: bool = True, scale: Optional[float] = None, precompute_resolution: Optional[int] = None, ): super().__init__() assert num_pos_feats % 2 == 0, "Expecting even model width" self.num_pos_feats = num_pos_feats // 2 self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale self.cache = {} # Precompute positional encodings under `precompute_resolution` to fill the cache # and avoid symbolic shape tracing errors in torch.compile in PyTorch 2.4 nightly. if precompute_resolution is not None: # We precompute pos enc for stride 4, 8, 16 and 32 to fill `self.cache`. precompute_sizes = [ (precompute_resolution // 4, precompute_resolution // 4), (precompute_resolution // 8, precompute_resolution // 8), (precompute_resolution // 16, precompute_resolution // 16), (precompute_resolution // 32, precompute_resolution // 32), ] for size in precompute_sizes: tensors = torch.zeros((1, 1) + size, device="cuda") self.forward(tensors) # further clone and detach it in the cache (just to be safe) self.cache[size] = self.cache[size].clone().detach() def _encode_xy(self, x, y): # The positions are expected to be normalized assert len(x) == len(y) and x.ndim == y.ndim == 1 x_embed = x * self.scale y_embed = y * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, None] / dim_t pos_y = y_embed[:, None] / dim_t pos_x = torch.stack( (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 ).flatten(1) pos_y = torch.stack( (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 ).flatten(1) return pos_x, pos_y @torch.no_grad() def encode_boxes(self, x, y, w, h): pos_x, pos_y = self._encode_xy(x, y) pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) return pos encode = encode_boxes # Backwards compatibility @torch.no_grad() def encode_points(self, x, y, labels): (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape assert bx == by and nx == ny and bx == bl and nx == nl pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) return pos @torch.no_grad() def forward(self, x): cache_key = None cache_key = (x.shape[-2], x.shape[-1]) if cache_key in self.cache: return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) y_embed = ( torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) .view(1, -1, 1) .repeat(x.shape[0], 1, x.shape[-1]) ) x_embed = ( torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) .view(1, 1, -1) .repeat(x.shape[0], x.shape[-2], 1) ) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) if cache_key is not None: self.cache[cache_key] = pos[0] return pos