# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved """ Utilities for bounding box manipulation and GIoU. """ from typing import Tuple import torch def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_cxcywh_to_xywh(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (w), (h)] return torch.stack(b, dim=-1) def box_xywh_to_xyxy(x): x, y, w, h = x.unbind(-1) b = [(x), (y), (x + w), (y + h)] return torch.stack(b, dim=-1) def box_xywh_to_cxcywh(x): x, y, w, h = x.unbind(-1) b = [(x + 0.5 * w), (y + 0.5 * h), (w), (h)] return torch.stack(b, dim=-1) def box_xyxy_to_xywh(x): x, y, X, Y = x.unbind(-1) b = [(x), (y), (X - x), (Y - y)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) def box_area(boxes): """ Batched version of box area. Boxes should be in [x0, y0, x1, y1] format. Inputs: - boxes: Tensor of shape (..., 4) Returns: - areas: Tensor of shape (...,) """ x0, y0, x1, y1 = boxes.unbind(-1) return (x1 - x0) * (y1 - y0) def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float, device=masks.device) x = torch.arange(0, w, dtype=torch.float, device=masks.device) y, x = torch.meshgrid(y, x) x_mask = masks * x.unsqueeze(0) x_max = x_mask.flatten(1).max(-1)[0] + 1 x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = masks * y.unsqueeze(0) y_max = y_mask.flatten(1).max(-1)[0] + 1 y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] boxes = torch.stack([x_min, y_min, x_max, y_max], 1) # Invalidate boxes corresponding to empty masks. boxes = boxes * masks.flatten(-2).any(-1) return boxes def box_iou(boxes1, boxes2): """ Batched version of box_iou. Boxes should be in [x0, y0, x1, y1] format. Inputs: - boxes1: Tensor of shape (..., N, 4) - boxes2: Tensor of shape (..., M, 4) Returns: - iou, union: Tensors of shape (..., N, M) """ area1 = box_area(boxes1) area2 = box_area(boxes2) # boxes1: (..., N, 4) -> (..., N, 1, 2) # boxes2: (..., M, 4) -> (..., 1, M, 2) lt = torch.max(boxes1[..., :, None, :2], boxes2[..., None, :, :2]) rb = torch.min(boxes1[..., :, None, 2:], boxes2[..., None, :, 2:]) wh = (rb - lt).clamp(min=0) # (..., N, M, 2) inter = wh[..., 0] * wh[..., 1] # (..., N, M) union = area1[..., None] + area2[..., None, :] - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Batched version of Generalized IoU from https://giou.stanford.edu/ Boxes should be in [x0, y0, x1, y1] format Inputs: - boxes1: Tensor of shape (..., N, 4) - boxes2: Tensor of shape (..., M, 4) Returns: - giou: Tensor of shape (..., N, M) """ iou, union = box_iou(boxes1, boxes2) # boxes1: (..., N, 4) -> (..., N, 1, 2) # boxes2: (..., M, 4) -> (..., 1, M, 2) lt = torch.min(boxes1[..., :, None, :2], boxes2[..., None, :, :2]) rb = torch.max(boxes1[..., :, None, 2:], boxes2[..., None, :, 2:]) wh = (rb - lt).clamp(min=0) # (..., N, M, 2) area = wh[..., 0] * wh[..., 1] # (..., N, M) return iou - (area - union) / area @torch.jit.script def fast_diag_generalized_box_iou(boxes1, boxes2): assert len(boxes1) == len(boxes2) box1_xy = boxes1[:, 2:] box1_XY = boxes1[:, :2] box2_xy = boxes2[:, 2:] box2_XY = boxes2[:, :2] # assert (box1_xy >= box1_XY).all() # assert (box2_xy >= box2_XY).all() area1 = (box1_xy - box1_XY).prod(-1) area2 = (box2_xy - box2_XY).prod(-1) lt = torch.max(box1_XY, box2_XY) # [N,2] lt2 = torch.min(box1_XY, box2_XY) rb = torch.min(box1_xy, box2_xy) # [N,2] rb2 = torch.max(box1_xy, box2_xy) inter = (rb - lt).clamp(min=0).prod(-1) tot_area = (rb2 - lt2).clamp(min=0).prod(-1) union = area1 + area2 - inter iou = inter / union return iou - (tot_area - union) / tot_area @torch.jit.script def fast_diag_box_iou(boxes1, boxes2): assert len(boxes1) == len(boxes2) box1_xy = boxes1[:, 2:] box1_XY = boxes1[:, :2] box2_xy = boxes2[:, 2:] box2_XY = boxes2[:, :2] # assert (box1_xy >= box1_XY).all() # assert (box2_xy >= box2_XY).all() area1 = (box1_xy - box1_XY).prod(-1) area2 = (box2_xy - box2_XY).prod(-1) lt = torch.max(box1_XY, box2_XY) # [N,2] rb = torch.min(box1_xy, box2_xy) # [N,2] inter = (rb - lt).clamp(min=0).prod(-1) union = area1 + area2 - inter iou = inter / union return iou def box_xywh_inter_union( boxes1: torch.Tensor, boxes2: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: # Asuumes boxes in xywh format assert boxes1.size(-1) == 4 and boxes2.size(-1) == 4 boxes1 = box_xywh_to_xyxy(boxes1) boxes2 = box_xywh_to_xyxy(boxes2) box1_tl_xy = boxes1[..., :2] box1_br_xy = boxes1[..., 2:] box2_tl_xy = boxes2[..., :2] box2_br_xy = boxes2[..., 2:] area1 = (box1_br_xy - box1_tl_xy).prod(-1) area2 = (box2_br_xy - box2_tl_xy).prod(-1) assert (area1 >= 0).all() and (area2 >= 0).all() tl = torch.max(box1_tl_xy, box2_tl_xy) br = torch.min(box1_br_xy, box2_br_xy) inter = (br - tl).clamp(min=0).prod(-1) union = area1 + area2 - inter return inter, union