bellmake's picture
SAM3 Video Segmentation - Clean deployment
14114e8
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import logging
import os
import random
import sys
import traceback
from argparse import ArgumentParser
from copy import deepcopy
import submitit
import torch
from hydra import compose, initialize_config_module
from hydra.utils import instantiate
from iopath.common.file_io import g_pathmgr
from omegaconf import OmegaConf
from sam3.train.utils.train_utils import makedir, register_omegaconf_resolvers
from tqdm import tqdm
os.environ["HYDRA_FULL_ERROR"] = "1"
class SlurmEvent:
QUEUED = "QUEUED"
START = "START"
FINISH = "FINISH"
JOB_ERROR = "JOB_ERROR"
SLURM_SIGNAL = "SLURM_SIGNAL"
def handle_custom_resolving(cfg):
# We'll resolve the config here, so we can catch mistakes early.
# However, we need to pass the un-resolved config to the launcher
# (because DVC resolving needs to be done on the node it will run on)
# First, do a copy without triggering resolving
cfg_resolved = OmegaConf.to_container(cfg, resolve=False)
cfg_resolved = OmegaConf.create(cfg_resolved)
return cfg_resolved
def single_proc_run(local_rank, main_port, cfg, world_size):
"""Single GPU process"""
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(main_port)
os.environ["RANK"] = str(local_rank)
os.environ["LOCAL_RANK"] = str(local_rank)
os.environ["WORLD_SIZE"] = str(world_size)
try:
register_omegaconf_resolvers()
except Exception as e:
logging.info(e)
trainer = instantiate(cfg.trainer, _recursive_=False)
trainer.run()
def single_node_runner(cfg, main_port: int):
assert cfg.launcher.num_nodes == 1
# assert cfg.launcher.gpus_per_node == 1
num_proc = cfg.launcher.gpus_per_node
torch.multiprocessing.set_start_method(
"spawn"
) # CUDA runtime does not support `fork`
if num_proc == 1:
# directly call single_proc so we can easily set breakpoints
# mp.spawn does not let us set breakpoints
single_proc_run(local_rank=0, main_port=main_port, cfg=cfg, world_size=num_proc)
else:
mp_runner = torch.multiprocessing.start_processes
args = (main_port, cfg, num_proc)
# Note: using "fork" below, "spawn" causes time and error regressions. Using
# spawn changes the default multiprocessing context to spawn, which doesn't
# interact well with the dataloaders (likely due to the use of OpenCV).
mp_runner(single_proc_run, args=args, nprocs=num_proc, start_method="spawn")
def format_exception(e: Exception, limit=20):
traceback_str = "".join(traceback.format_tb(e.__traceback__, limit=limit))
return f"{type(e).__name__}: {e}\nTraceback:\n{traceback_str}"
class SubmititRunner(submitit.helpers.Checkpointable):
"""A callable which is passed to submitit to launch the jobs."""
def __init__(self, port, cfg):
self.cfg = cfg
self.port = port
self.has_setup = False
def run_trainer(self):
job_env = submitit.JobEnvironment()
# Need to add this again so the hydra.job.set_env PYTHONPATH
# is also set when launching jobs.
add_pythonpath_to_sys_path()
os.environ["MASTER_ADDR"] = job_env.hostnames[0]
os.environ["MASTER_PORT"] = str(self.port)
os.environ["RANK"] = str(job_env.global_rank)
os.environ["LOCAL_RANK"] = str(job_env.local_rank)
os.environ["WORLD_SIZE"] = str(job_env.num_tasks)
register_omegaconf_resolvers()
cfg_resolved = OmegaConf.to_container(self.cfg, resolve=False)
cfg_resolved = OmegaConf.create(cfg_resolved)
trainer = instantiate(cfg_resolved.trainer, _recursive_=False)
trainer.run()
def __call__(self):
job_env = submitit.JobEnvironment()
self.setup_job_info(job_env.job_id, job_env.global_rank)
try:
self.run_trainer()
except Exception as e:
# Log the exception. Then raise it again (as what SubmititRunner currently does).
message = format_exception(e)
logging.error(message)
raise e
def setup_job_info(self, job_id, rank):
"""Set up slurm job info"""
self.job_info = {
"job_id": job_id,
"rank": rank,
"cluster": self.cfg.get("cluster", None),
"experiment_log_dir": self.cfg.launcher.experiment_log_dir,
}
self.has_setup = True
def add_pythonpath_to_sys_path():
if "PYTHONPATH" not in os.environ or not os.environ["PYTHONPATH"]:
return
sys.path = os.environ["PYTHONPATH"].split(":") + sys.path
def main(args) -> None:
cfg = compose(config_name=args.config)
if cfg.launcher.experiment_log_dir is None:
cfg.launcher.experiment_log_dir = os.path.join(
os.getcwd(), "sam3_logs", args.config
)
print("###################### Train App Config ####################")
print(OmegaConf.to_yaml(cfg))
print("############################################################")
add_pythonpath_to_sys_path()
makedir(cfg.launcher.experiment_log_dir)
with g_pathmgr.open(
os.path.join(cfg.launcher.experiment_log_dir, "config.yaml"), "w"
) as f:
f.write(OmegaConf.to_yaml(cfg))
cfg_resolved = OmegaConf.to_container(cfg, resolve=False)
cfg_resolved = OmegaConf.create(cfg_resolved)
with g_pathmgr.open(
os.path.join(cfg.launcher.experiment_log_dir, "config_resolved.yaml"), "w"
) as f:
f.write(OmegaConf.to_yaml(cfg_resolved, resolve=True))
submitit_conf = cfg.get("submitit", None)
assert submitit_conf is not None, "Missing submitit config"
experiment_log_dir = cfg.launcher.experiment_log_dir
print(f"Experiment Log Dir:\n{experiment_log_dir}")
submitit_dir = os.path.join(experiment_log_dir, "submitit_logs")
# Prioritize cmd line args
cfg.launcher.gpus_per_node = (
args.num_gpus if args.num_gpus is not None else cfg.launcher.gpus_per_node
)
cfg.launcher.num_nodes = (
args.num_nodes if args.num_nodes is not None else cfg.launcher.num_nodes
)
submitit_conf.use_cluster = (
args.use_cluster if args.use_cluster is not None else submitit_conf.use_cluster
)
if submitit_conf.use_cluster:
executor = submitit.AutoExecutor(folder=submitit_dir)
submitit_conf.partition = (
args.partition
if args.partition is not None
else submitit_conf.get("partition", None)
)
submitit_conf.account = (
args.account
if args.account is not None
else submitit_conf.get("account", None)
)
submitit_conf.qos = (
args.qos if args.qos is not None else submitit_conf.get("qos", None)
)
job_kwargs = {
"timeout_min": 60 * submitit_conf.timeout_hour,
"name": (
submitit_conf.name if hasattr(submitit_conf, "name") else args.config
),
"slurm_partition": submitit_conf.partition,
"gpus_per_node": cfg.launcher.gpus_per_node,
"tasks_per_node": cfg.launcher.gpus_per_node, # one task per GPU
"cpus_per_task": submitit_conf.cpus_per_task,
"nodes": cfg.launcher.num_nodes,
"slurm_additional_parameters": {
"exclude": " ".join(submitit_conf.get("exclude_nodes", [])),
},
}
if "include_nodes" in submitit_conf:
assert (
len(submitit_conf["include_nodes"]) >= cfg.launcher.num_nodes
), "Not enough nodes"
job_kwargs["slurm_additional_parameters"]["nodelist"] = " ".join(
submitit_conf["include_nodes"]
)
if submitit_conf.account is not None:
job_kwargs["slurm_additional_parameters"]["account"] = submitit_conf.account
if submitit_conf.qos is not None:
job_kwargs["slurm_additional_parameters"]["qos"] = submitit_conf.qos
if submitit_conf.get("mem_gb", None) is not None:
job_kwargs["mem_gb"] = submitit_conf.mem_gb
elif submitit_conf.get("mem", None) is not None:
job_kwargs["slurm_mem"] = submitit_conf.mem
if submitit_conf.get("constraints", None) is not None:
job_kwargs["slurm_constraint"] = submitit_conf.constraints
if submitit_conf.get("comment", None) is not None:
job_kwargs["slurm_comment"] = submitit_conf.comment
# Supports only cpu-bind option within srun_args. New options can be added here
if submitit_conf.get("srun_args", None) is not None:
job_kwargs["slurm_srun_args"] = []
if submitit_conf.srun_args.get("cpu_bind", None) is not None:
job_kwargs["slurm_srun_args"].extend(
["--cpu-bind", submitit_conf.srun_args.cpu_bind]
)
print("###################### SLURM Config ####################")
print(job_kwargs)
print("##########################################")
executor.update_parameters(**job_kwargs)
if (
"job_array" in submitit_conf
and submitit_conf.job_array.get("num_tasks", -1) > 0
):
num_tasks = submitit_conf.job_array.num_tasks
job_array_config_dir = os.path.join(
cfg.launcher.experiment_log_dir, "job_array_configs"
)
makedir(job_array_config_dir)
job_indices = range(num_tasks)
ports = random.sample(
range(submitit_conf.port_range[0], submitit_conf.port_range[1] + 1),
k=len(job_indices),
)
jobs_runners_configs = []
with executor.batch():
task_index = 0
for indices, main_port in tqdm(zip(job_indices, ports)):
curr_cfg = deepcopy(cfg)
curr_cfg.submitit.job_array["task_index"] = task_index
curr_cfg_resolved = handle_custom_resolving(cfg)
runner = SubmititRunner(main_port, curr_cfg)
job = executor.submit(runner)
jobs_runners_configs.append(
(job, runner, curr_cfg, curr_cfg_resolved)
)
task_index += 1
for job, runner, job_cfg, job_cfg_resolved in jobs_runners_configs:
print("Submitit Job ID:", job.job_id)
# Save job specific config
job_array_config_file = os.path.join(
job_array_config_dir, "{}.config.yaml".format(job.job_id)
)
with g_pathmgr.open(job_array_config_file, "w") as f:
f.write(OmegaConf.to_yaml(job_cfg))
job_array_config_resolved_file = os.path.join(
job_array_config_dir, "{}.config_resolved.yaml".format(job.job_id)
)
with g_pathmgr.open(job_array_config_resolved_file, "w") as f:
f.write(OmegaConf.to_yaml(job_cfg_resolved, resolve=True))
runner.setup_job_info(job.job_id, rank=0)
# runner.log_event(event_type=SlurmEvent.QUEUED)
else:
main_port = random.randint(
submitit_conf.port_range[0], submitit_conf.port_range[1]
)
runner = SubmititRunner(main_port, cfg)
job = executor.submit(runner)
print(f"Submitit Job ID: {job.job_id}")
runner.setup_job_info(job.job_id, rank=0)
else:
cfg.launcher.num_nodes = 1
main_port = random.randint(
submitit_conf.port_range[0], submitit_conf.port_range[1]
)
single_node_runner(cfg, main_port)
if __name__ == "__main__":
initialize_config_module("sam3.train", version_base="1.2")
parser = ArgumentParser()
parser.add_argument(
"-c",
"--config",
required=True,
type=str,
help="path to config file (e.g. configs/roboflow_v100_full_ft_100_images.yaml)",
)
parser.add_argument(
"--use-cluster",
type=int,
default=None,
help="whether to launch on a cluster, 0: run locally, 1: run on a cluster",
)
parser.add_argument("--partition", type=str, default=None, help="SLURM partition")
parser.add_argument("--account", type=str, default=None, help="SLURM account")
parser.add_argument("--qos", type=str, default=None, help="SLURM qos")
parser.add_argument(
"--num-gpus", type=int, default=None, help="number of GPUS per node"
)
parser.add_argument("--num-nodes", type=int, default=None, help="Number of nodes")
args = parser.parse_args()
args.use_cluster = bool(args.use_cluster) if args.use_cluster is not None else None
register_omegaconf_resolvers()
main(args)