Spaces:
Starting
on
L40S
Starting
on
L40S
| # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved | |
| """ | |
| Adapted from: | |
| 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py | |
| 2. https://github.com/naver-ai/rope-vit | |
| 3. https://github.com/lucidrains/rotary-embedding-torch | |
| """ | |
| from typing import Optional | |
| import torch | |
| from einops import rearrange, repeat | |
| from torch import broadcast_tensors, nn | |
| def init_t_xy(end_x: int, end_y: int, scale: float = 1.0, offset: int = 0, device=None): | |
| t = torch.arange(end_x * end_y, dtype=torch.float32, device=device) | |
| t_x = (t % end_x).float() | |
| t_y = torch.div(t, end_x, rounding_mode="floor").float() | |
| return t_x * scale + offset, t_y * scale + offset | |
| def compute_axial_cis( | |
| dim: int, | |
| end_x: int, | |
| end_y: int, | |
| theta: float = 10000.0, | |
| scale_pos: float = 1.0, | |
| offset: int = 0, | |
| device=None, | |
| ): | |
| freqs_x = 1.0 / ( | |
| theta ** (torch.arange(0, dim, 4, device=device)[: (dim // 4)].float() / dim) | |
| ) | |
| freqs_y = 1.0 / ( | |
| theta ** (torch.arange(0, dim, 4, device=device)[: (dim // 4)].float() / dim) | |
| ) | |
| t_x, t_y = init_t_xy(end_x, end_y, scale_pos, offset, device=device) | |
| freqs_x = torch.outer(t_x, freqs_x) | |
| freqs_y = torch.outer(t_y, freqs_y) | |
| freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) | |
| freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) | |
| return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) | |
| def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
| ndim = x.ndim | |
| assert 0 <= 1 < ndim | |
| assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) | |
| shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] | |
| return freqs_cis.view(*shape) | |
| def apply_rotary_enc( | |
| xq: torch.Tensor, | |
| xk: torch.Tensor, | |
| freqs_cis: torch.Tensor, | |
| repeat_freqs_k: bool = False, | |
| ): | |
| xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
| xk_ = ( | |
| torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
| if xk.shape[-2] != 0 | |
| else None | |
| ) | |
| freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
| xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
| if xk_ is None: | |
| # no keys to rotate, due to dropout | |
| return xq_out.type_as(xq).to(xq.device), xk | |
| # repeat freqs along seq_len dim to match k seq_len | |
| if repeat_freqs_k: | |
| r = xk_.shape[-2] // xq_.shape[-2] | |
| freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) | |
| xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
| return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) | |
| def complex_mult(xq_real, xq_imag, freqs_cis_real, freqs_cis_imag): | |
| # Compute the real part of the product | |
| real_part = xq_real * freqs_cis_real - xq_imag * freqs_cis_imag | |
| # Compute the imaginary part of the product | |
| imag_part = xq_real * freqs_cis_imag + xq_imag * freqs_cis_real | |
| # Stack the real and imaginary parts along the last dimension | |
| return torch.stack([real_part, imag_part], dim=-1) | |
| def apply_rotary_enc_real( | |
| xq: torch.Tensor, | |
| xk: torch.Tensor, | |
| freqs_cis_real: torch.Tensor, | |
| freqs_cis_imag: torch.Tensor, | |
| repeat_freqs_k: bool = False, | |
| ): | |
| assert xk is not None | |
| assert xk.shape[-2] != 0 | |
| xq_real = xq.float().reshape(*xq.shape[:-1], -1, 2)[..., 0] | |
| xq_imag = xq.float().reshape(*xq.shape[:-1], -1, 2)[..., 1] | |
| xk_real = xk.float().reshape(*xk.shape[:-1], -1, 2)[..., 0] | |
| xk_imag = xk.float().reshape(*xk.shape[:-1], -1, 2)[..., 1] | |
| freqs_cis_real = reshape_for_broadcast(freqs_cis_real, xq_real) | |
| freqs_cis_imag = reshape_for_broadcast(freqs_cis_imag, xq_imag) | |
| xq_out = complex_mult(xq_real, xq_imag, freqs_cis_real, freqs_cis_imag).flatten(3) | |
| if repeat_freqs_k: | |
| r = xk_real.shape[-2] // xq_real.shape[-2] | |
| freqs_cis_real = freqs_cis_real.repeat(*([1] * (freqs_cis_real.ndim - 2)), r, 1) | |
| freqs_cis_imag = freqs_cis_imag.repeat(*([1] * (freqs_cis_imag.ndim - 2)), r, 1) | |
| xk_out = complex_mult(xk_real, xk_imag, freqs_cis_real, freqs_cis_imag).flatten(3) | |
| # xq_out = torch.view_as_real(torch.complex(xq_real, xq_imag) * torch.complex(freqs_cis_real, freqs_cis_imag)).flatten(3) | |
| # xk_out = torch.view_as_real(torch.compelx(xk_real, xk_imag) * torch.complex(freqs_cis_real, freqs_cis_imag)).flatten(3) | |
| return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) | |
| # rotary embedding helper functions | |
| def broadcat(tensors, dim=-1): | |
| broadcasted_tensors = broadcast_tensors(*tensors) | |
| return torch.cat(broadcasted_tensors, dim=dim) | |
| def rotate_half(x: torch.Tensor): | |
| x = rearrange(x, "... (d r) -> ... d r", r=2) | |
| x1, x2 = x.unbind(dim=-1) | |
| x = torch.stack((-x2, x1), dim=-1) | |
| return rearrange(x, "... d r -> ... (d r)") | |
| class VisionRotaryEmbeddingVE(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| seq_len: int, | |
| pt_seq_len: Optional[int] = None, | |
| theta: float = 10000.0, | |
| offset: int = 1, # specific to VE | |
| ): | |
| super().__init__() | |
| freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
| scale = 1.0 | |
| if pt_seq_len is not None: | |
| scale = pt_seq_len / seq_len | |
| # offset of +1 following VE - even though for the | |
| # attention op only differences matter | |
| t = torch.arange(seq_len) * scale + offset | |
| freqs = torch.einsum("..., f -> ... f", t, freqs) | |
| freqs = repeat(freqs, "... n -> ... (n r)", r=2) | |
| freqs = broadcat((freqs[None, :, :], freqs[:, None, :]), dim=-1) | |
| freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) | |
| freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) | |
| self.register_buffer("freqs_cos", freqs_cos) | |
| self.register_buffer("freqs_sin", freqs_sin) | |
| def forward(self, t: torch.Tensor): | |
| return t * self.freqs_cos + rotate_half(t) * self.freqs_sin | |