bellmake's picture
SAM3 Video Segmentation - Clean deployment
14114e8
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
"""Provides utility to combine a vision backbone with a language backbone."""
from copy import copy
from typing import List, Optional
import torch
import torch.nn as nn
from torch.nn.attention import sdpa_kernel, SDPBackend
from .act_ckpt_utils import activation_ckpt_wrapper
from .necks import Sam3DualViTDetNeck
class SAM3VLBackbone(nn.Module):
"""This backbone combines a vision backbone and a language backbone without fusion.
As such it is more of a convenience wrapper to handle the two backbones together.
It adds support for activation checkpointing and compilation.
"""
def __init__(
self,
visual: Sam3DualViTDetNeck,
text,
compile_visual: bool = False,
act_ckpt_whole_vision_backbone: bool = False,
act_ckpt_whole_language_backbone: bool = False,
scalp=0,
):
"""Initialize the backbone combiner.
:param visual: The vision backbone to use
:param text: The text encoder to use
"""
super().__init__()
self.vision_backbone: Sam3DualViTDetNeck = (
torch.compile(visual) if compile_visual else visual
)
self.language_backbone = text
self.scalp = scalp
# allow running activation checkpointing on the entire vision and language backbones
self.act_ckpt_whole_vision_backbone = act_ckpt_whole_vision_backbone
self.act_ckpt_whole_language_backbone = act_ckpt_whole_language_backbone
def forward(
self,
samples: torch.Tensor,
captions: List[str],
input_boxes: Optional[torch.Tensor] = None,
additional_text: Optional[List[str]] = None,
):
"""Forward pass of the backbone combiner.
:param samples: The input images
:param captions: The input captions
:param input_boxes: If the text contains place-holders for boxes, this
parameter contains the tensor containing their spatial features
:param additional_text: This can be used to encode some additional text
(different from the captions) in the same forward of the backbone
:return: Output dictionary with the following keys:
- vision_features: The output of the vision backbone
- language_features: The output of the language backbone
- language_mask: The attention mask of the language backbone
- vision_pos_enc: The positional encoding of the vision backbone
- (optional) additional_text_features: The output of the language
backbone for the additional text
- (optional) additional_text_mask: The attention mask of the
language backbone for the additional text
"""
output = self.forward_image(samples)
device = output["vision_features"].device
output.update(self.forward_text(captions, input_boxes, additional_text, device))
return output
def forward_image(self, samples: torch.Tensor):
return activation_ckpt_wrapper(self._forward_image_no_act_ckpt)(
samples=samples,
act_ckpt_enable=self.act_ckpt_whole_vision_backbone and self.training,
)
def _forward_image_no_act_ckpt(self, samples):
# Forward through backbone
sam3_features, sam3_pos, sam2_features, sam2_pos = self.vision_backbone.forward(
samples
)
if self.scalp > 0:
# Discard the lowest resolution features
sam3_features, sam3_pos = (
sam3_features[: -self.scalp],
sam3_pos[: -self.scalp],
)
if sam2_features is not None and sam2_pos is not None:
sam2_features, sam2_pos = (
sam2_features[: -self.scalp],
sam2_pos[: -self.scalp],
)
sam2_output = None
if sam2_features is not None and sam2_pos is not None:
sam2_src = sam2_features[-1]
sam2_output = {
"vision_features": sam2_src,
"vision_pos_enc": sam2_pos,
"backbone_fpn": sam2_features,
}
sam3_src = sam3_features[-1]
output = {
"vision_features": sam3_src,
"vision_pos_enc": sam3_pos,
"backbone_fpn": sam3_features,
"sam2_backbone_out": sam2_output,
}
return output
def forward_text(
self, captions, input_boxes=None, additional_text=None, device="cuda"
):
return activation_ckpt_wrapper(self._forward_text_no_ack_ckpt)(
captions=captions,
input_boxes=input_boxes,
additional_text=additional_text,
device=device,
act_ckpt_enable=self.act_ckpt_whole_language_backbone and self.training,
)
def _forward_text_no_ack_ckpt(
self,
captions,
input_boxes=None,
additional_text=None,
device="cuda",
):
output = {}
# Forward through text_encoder
text_to_encode = copy(captions)
if additional_text is not None:
# if there are additional_text, we piggy-back them into this forward.
# They'll be used later for output alignment
text_to_encode += additional_text
sdpa_context = sdpa_kernel(
[
SDPBackend.MATH,
SDPBackend.EFFICIENT_ATTENTION,
SDPBackend.FLASH_ATTENTION,
]
)
with sdpa_context:
text_attention_mask, text_memory, text_embeds = self.language_backbone(
text_to_encode, input_boxes, device=device
)
if additional_text is not None:
output["additional_text_features"] = text_memory[:, -len(additional_text) :]
output["additional_text_mask"] = text_attention_mask[
-len(additional_text) :
]
text_memory = text_memory[:, : len(captions)]
text_attention_mask = text_attention_mask[: len(captions)]
text_embeds = text_embeds[:, : len(captions)]
output["language_features"] = text_memory
output["language_mask"] = text_attention_mask
output["language_embeds"] = (
text_embeds # Text embeddings before forward to the encoder
)
return output