SAM3-video-segmentation-tracking / sam3 /model /sam3_image_processor.py
bellmake's picture
SAM3 Video Segmentation - Clean deployment
14114e8
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
from typing import Dict, List
import numpy as np
import PIL
import torch
from sam3.model import box_ops
from sam3.model.data_misc import FindStage, interpolate
from torchvision.transforms import v2
class Sam3Processor:
""" """
def __init__(self, model, resolution=1008, device="cuda", confidence_threshold=0.5):
self.model = model
self.resolution = resolution
self.device = device
self.transform = v2.Compose(
[
v2.ToDtype(torch.uint8, scale=True),
v2.Resize(size=(resolution, resolution)),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
self.confidence_threshold = confidence_threshold
self.find_stage = FindStage(
img_ids=torch.tensor([0], device=device, dtype=torch.long),
text_ids=torch.tensor([0], device=device, dtype=torch.long),
input_boxes=None,
input_boxes_mask=None,
input_boxes_label=None,
input_points=None,
input_points_mask=None,
)
@torch.inference_mode()
def set_image(self, image, state=None):
"""Sets the image on which we want to do predictions."""
if state is None:
state = {}
if isinstance(image, PIL.Image.Image):
width, height = image.size
elif isinstance(image, (torch.Tensor, np.ndarray)):
height, width = image.shape[-2:]
else:
raise ValueError("Image must be a PIL image or a tensor")
image = v2.functional.to_image(image).to(self.device)
image = self.transform(image).unsqueeze(0)
state["original_height"] = height
state["original_width"] = width
state["backbone_out"] = self.model.backbone.forward_image(image)
inst_interactivity_en = self.model.inst_interactive_predictor is not None
if inst_interactivity_en and "sam2_backbone_out" in state["backbone_out"]:
sam2_backbone_out = state["backbone_out"]["sam2_backbone_out"]
sam2_backbone_out["backbone_fpn"][0] = (
self.model.inst_interactive_predictor.model.sam_mask_decoder.conv_s0(
sam2_backbone_out["backbone_fpn"][0]
)
)
sam2_backbone_out["backbone_fpn"][1] = (
self.model.inst_interactive_predictor.model.sam_mask_decoder.conv_s1(
sam2_backbone_out["backbone_fpn"][1]
)
)
return state
@torch.inference_mode()
def set_image_batch(self, images: List[np.ndarray], state=None):
"""Sets the image batch on which we want to do predictions."""
if state is None:
state = {}
if not isinstance(images, list):
raise ValueError("Images must be a list of PIL images or tensors")
assert len(images) > 0, "Images list must not be empty"
assert isinstance(
images[0], PIL.Image.Image
), "Images must be a list of PIL images"
state["original_heights"] = [image.height for image in images]
state["original_widths"] = [image.width for image in images]
images = [
self.transform(v2.functional.to_image(image).to(self.device))
for image in images
]
images = torch.stack(images, dim=0)
state["backbone_out"] = self.model.backbone.forward_image(images)
inst_interactivity_en = self.model.inst_interactive_predictor is not None
if inst_interactivity_en and "sam2_backbone_out" in state["backbone_out"]:
sam2_backbone_out = state["backbone_out"]["sam2_backbone_out"]
sam2_backbone_out["backbone_fpn"][0] = (
self.model.inst_interactive_predictor.model.sam_mask_decoder.conv_s0(
sam2_backbone_out["backbone_fpn"][0]
)
)
sam2_backbone_out["backbone_fpn"][1] = (
self.model.inst_interactive_predictor.model.sam_mask_decoder.conv_s1(
sam2_backbone_out["backbone_fpn"][1]
)
)
return state
@torch.inference_mode()
def set_text_prompt(self, prompt: str, state: Dict):
"""Sets the text prompt and run the inference"""
if "backbone_out" not in state:
raise ValueError("You must call set_image before set_text_prompt")
text_outputs = self.model.backbone.forward_text([prompt], device=self.device)
# will erase the previous text prompt if any
state["backbone_out"].update(text_outputs)
if "geometric_prompt" not in state:
state["geometric_prompt"] = self.model._get_dummy_prompt()
return self._forward_grounding(state)
@torch.inference_mode()
def add_geometric_prompt(self, box: List, label: bool, state: Dict):
"""Adds a box prompt and run the inference.
The image needs to be set, but not necessarily the text prompt.
The box is assumed to be in [center_x, center_y, width, height] format and normalized in [0, 1] range.
The label is True for a positive box, False for a negative box.
"""
if "backbone_out" not in state:
raise ValueError("You must call set_image before set_text_prompt")
if "language_features" not in state["backbone_out"]:
# Looks like we don't have a text prompt yet. This is allowed, but we need to set the text prompt to "visual" for the model to rely only on the geometric prompt
dummy_text_outputs = self.model.backbone.forward_text(
["visual"], device=self.device
)
state["backbone_out"].update(dummy_text_outputs)
if "geometric_prompt" not in state:
state["geometric_prompt"] = self.model._get_dummy_prompt()
# adding a batch and sequence dimension
boxes = torch.tensor(box, device=self.device, dtype=torch.float32).view(1, 1, 4)
labels = torch.tensor([label], device=self.device, dtype=torch.bool).view(1, 1)
state["geometric_prompt"].append_boxes(boxes, labels)
return self._forward_grounding(state)
def reset_all_prompts(self, state: Dict):
"""Removes all the prompts and results"""
if "backbone_out" in state:
backbone_keys_to_del = [
"language_features",
"language_mask",
"language_embeds",
]
for key in backbone_keys_to_del:
if key in state["backbone_out"]:
del state["backbone_out"][key]
keys_to_del = ["geometric_prompt", "boxes", "masks", "masks_logits", "scores"]
for key in keys_to_del:
if key in state:
del state[key]
@torch.inference_mode()
def set_confidence_threshold(self, threshold: float, state=None):
"""Sets the confidence threshold for the masks"""
self.confidence_threshold = threshold
if state is not None and "boxes" in state:
# we need to filter the boxes again
# In principle we could do this more efficiently since we would only need
# to rerun the heads. But this is simpler and not too inefficient
return self._forward_grounding(state)
return state
@torch.inference_mode()
def _forward_grounding(self, state: Dict):
outputs = self.model.forward_grounding(
backbone_out=state["backbone_out"],
find_input=self.find_stage,
geometric_prompt=state["geometric_prompt"],
find_target=None,
)
out_bbox = outputs["pred_boxes"]
out_logits = outputs["pred_logits"]
out_masks = outputs["pred_masks"]
out_probs = out_logits.sigmoid()
presence_score = outputs["presence_logit_dec"].sigmoid().unsqueeze(1)
out_probs = (out_probs * presence_score).squeeze(-1)
keep = out_probs > self.confidence_threshold
out_probs = out_probs[keep]
out_masks = out_masks[keep]
out_bbox = out_bbox[keep]
# convert to [x0, y0, x1, y1] format
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
img_h = state["original_height"]
img_w = state["original_width"]
scale_fct = torch.tensor([img_w, img_h, img_w, img_h]).to(self.device)
boxes = boxes * scale_fct[None, :]
out_masks = interpolate(
out_masks.unsqueeze(1),
(img_h, img_w),
mode="bilinear",
align_corners=False,
).sigmoid()
state["masks_logits"] = out_masks
state["masks"] = out_masks > 0.5
state["boxes"] = boxes
state["scores"] = out_probs
return state