bellmake's picture
SAM3 Video Segmentation - Clean deployment
14114e8
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
# Based on https://github.com/IDEA-Research/GroundingDINO
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn, Tensor
from .act_ckpt_utils import activation_ckpt_wrapper
from .model_misc import get_activation_fn, get_clones, get_valid_ratio
class TransformerEncoderLayer(nn.Module):
"""
Transformer encoder layer that performs self-attention followed by cross-attention.
This layer was previously called TransformerDecoderLayer but was renamed to better
reflect its role in the architecture. It processes input sequences through self-attention
and then cross-attention with another input (typically image features).
The layer supports both pre-norm and post-norm configurations, as well as
positional encoding at different stages of the attention mechanism.
"""
def __init__(
self,
activation: str,
cross_attention: nn.Module,
d_model: int,
dim_feedforward: int,
dropout: float,
pos_enc_at_attn: bool,
pos_enc_at_cross_attn_keys: bool,
pos_enc_at_cross_attn_queries: bool,
pre_norm: bool,
self_attention: nn.Module,
):
"""
Initialize a transformer encoder layer.
Args:
activation: Activation function to use in the feedforward network
cross_attention: Cross-attention module for attending to image features
d_model: Model dimension/hidden size
dim_feedforward: Dimension of the feedforward network
dropout: Dropout probability
pos_enc_at_attn: Whether to add positional encodings at self-attention
pos_enc_at_cross_attn_keys: Whether to add positional encodings to keys in cross-attention
pos_enc_at_cross_attn_queries: Whether to add positional encodings to queries in cross-attention
pre_norm: Whether to use pre-norm (True) or post-norm (False) architecture
self_attention: Self-attention module
"""
super().__init__()
self.d_model = d_model
self.dim_feedforward = dim_feedforward
self.dropout_value = dropout
self.self_attn = self_attention
self.cross_attn_image = cross_attention
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation_str = activation
self.activation = get_activation_fn(activation)
self.pre_norm = pre_norm
self.pos_enc_at_attn = pos_enc_at_attn
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
self.layer_idx = None
def forward_post(
self,
tgt: Tensor,
memory: Tensor,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
**kwargs,
) -> Tensor:
"""
Forward pass for post-norm architecture.
In post-norm architecture, normalization is applied after attention and feedforward operations.
Args:
tgt: Input tensor to be processed
memory: Memory tensor for cross-attention
tgt_mask: Mask for self-attention
memory_mask: Mask for cross-attention
tgt_key_padding_mask: Key padding mask for self-attention
memory_key_padding_mask: Key padding mask for cross-attention
pos: Positional encoding for memory
query_pos: Positional encoding for query
**kwargs: Additional keyword arguments
Returns:
Processed tensor
"""
q = k = tgt + query_pos if self.pos_enc_at_attn else tgt
# Self attention
tgt2 = self.self_attn(
q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# Cross attention to image
tgt2 = self.cross_attn_image(
query=tgt + query_pos if self.pos_enc_at_cross_attn_queries else tgt,
key=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# FFN
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward_pre(
self,
tgt: Tensor,
memory: Tensor,
dac: bool = False,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
# attn_bias: Optional[Tensor] = None,
# **kwargs,
) -> Tensor:
"""
Forward pass for pre-norm architecture.
In pre-norm architecture, normalization is applied before attention and feedforward operations.
Args:
tgt: Input tensor to be processed
memory: Memory tensor for cross-attention
dac: Whether to use Divide-and-Conquer attention
tgt_mask: Mask for self-attention
memory_mask: Mask for cross-attention
tgt_key_padding_mask: Key padding mask for self-attention
memory_key_padding_mask: Key padding mask for cross-attention
pos: Positional encoding for memory
query_pos: Positional encoding for query
attn_bias: Optional attention bias tensor
**kwargs: Additional keyword arguments
Returns:
Processed tensor
"""
if dac:
# we only apply self attention to the first half of the queries
assert tgt.shape[0] % 2 == 0
other_tgt = tgt[tgt.shape[0] // 2 :]
tgt = tgt[: tgt.shape[0] // 2]
tgt2 = self.norm1(tgt)
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
tgt2 = self.self_attn(
q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask
)[0]
tgt = tgt + self.dropout1(tgt2)
if dac:
# Recombine
tgt = torch.cat((tgt, other_tgt), dim=0)
tgt2 = self.norm2(tgt)
tgt2 = self.cross_attn_image(
query=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
key=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
# attn_bias=attn_bias,
)[0]
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
def forward(
self,
tgt: Tensor,
memory: Tensor,
dac: bool = False,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
# attn_bias: Optional[Tensor] = None,
# **kwds: Any,
) -> torch.Tensor:
"""
Forward pass for the transformer encoder layer.
Args:
tgt: Input tensor to be processed
memory: Memory tensor (e.g., image features) for cross-attention
dac: Whether to use Divide-and-Conquer attention (only apply self-attention to first half)
tgt_mask: Mask for self-attention
memory_mask: Mask for cross-attention
tgt_key_padding_mask: Key padding mask for self-attention
memory_key_padding_mask: Key padding mask for cross-attention
pos: Positional encoding for memory
query_pos: Positional encoding for query
attn_bias: Optional attention bias tensor
**kwds: Additional keyword arguments
Returns:
Processed tensor after self-attention, cross-attention, and feedforward network
"""
fwd_fn = self.forward_pre if self.pre_norm else self.forward_post
return fwd_fn(
tgt,
memory,
dac=dac,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos=pos,
query_pos=query_pos,
# attn_bias=attn_bias,
# **kwds,
)
class TransformerEncoder(nn.Module):
"""
Transformer encoder that processes multi-level features.
This encoder takes multi-level features (e.g., from a backbone network) and processes
them through a stack of transformer encoder layers. It supports features from multiple
levels (e.g., different resolutions) and can apply activation checkpointing for memory
efficiency during training.
Args:
layer: The encoder layer to be stacked multiple times
num_layers: Number of encoder layers to stack
d_model: Model dimension/hidden size
num_feature_levels: Number of feature levels to process
frozen: Whether to freeze the parameters of this module
use_act_checkpoint: Whether to use activation checkpointing during training
"""
def __init__(
self,
layer: nn.Module,
num_layers: int,
d_model: int,
num_feature_levels: int,
frozen: bool = False,
use_act_checkpoint: bool = False,
):
super().__init__()
self.layers = get_clones(layer, num_layers)
self.num_layers = num_layers
self.num_feature_levels = num_feature_levels
self.level_embed = None
if num_feature_levels > 1:
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
if frozen:
for p in self.parameters():
p.requires_grad_(False)
self.use_act_checkpoint = use_act_checkpoint
# assign layer index to each layer so that some layers can decide what to do
# based on which layer index they are (e.g. cross attention to memory bank only
# in selected layers)
for layer_idx, layer in enumerate(self.layers):
layer.layer_idx = layer_idx
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
with torch.no_grad():
reference_points_list = []
for lvl, (H_, W_) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(
torch.linspace(
0.5, H_ - 0.5, H_, dtype=torch.float32, device=device
),
torch.linspace(
0.5, W_ - 0.5, W_, dtype=torch.float32, device=device
),
)
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def _prepare_multilevel_features(self, srcs, masks, pos_embeds):
assert (
len(srcs) == self.num_feature_levels
), "mismatch between expected and received # of feature levels"
src_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
has_mask = masks is not None and masks[0] is not None
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
bs, c, h, w = src.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
src = src.flatten(2).transpose(1, 2) # bs, hw, c
if has_mask:
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
if self.level_embed is not None:
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
else:
lvl_pos_embed = pos_embed
lvl_pos_embed_flatten.append(lvl_pos_embed)
src_flatten.append(src)
if has_mask:
mask_flatten.append(mask)
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
mask_flatten = torch.cat(mask_flatten, 1) if has_mask else None # bs, \sum{hxw}
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
spatial_shapes = torch.tensor(
spatial_shapes, dtype=torch.long, device=src_flatten.device
)
level_start_index = torch.cat(
(
spatial_shapes.new_zeros((1,)),
spatial_shapes.prod(1).cumsum(0)[:-1],
)
)
if has_mask:
valid_ratios = torch.stack([get_valid_ratio(m) for m in masks], 1)
else:
valid_ratios = torch.ones(
(src_flatten.shape[0], self.num_feature_levels, 2),
device=src_flatten.device,
)
return (
src_flatten,
mask_flatten,
lvl_pos_embed_flatten,
level_start_index,
valid_ratios,
spatial_shapes,
)
def forward(
self,
src: List[Tensor],
src_key_padding_masks: Optional[List[Tensor]] = None,
pos: Optional[List[Tensor]] = None,
prompt: Optional[Tensor] = None,
prompt_key_padding_mask: Optional[Tensor] = None,
encoder_extra_kwargs: Optional[Dict] = None,
) -> Tuple[Tensor, Optional[Tensor], Tensor, Tensor, Tensor, Tensor]:
"""
Process multi-level features through the transformer encoder.
Args:
src: List of multi-level features, each with shape (batch_size, channels, height, width)
src_key_padding_masks: List of padding masks for each feature level, each with shape (batch_size, height, width)
pos: List of positional embeddings for each feature level, each with shape (batch_size, channels, height, width)
prompt: Optional text/prompt features to attend to, with shape (seq_len, batch_size, d_model)
prompt_key_padding_mask: Optional padding mask for prompt, with shape (batch_size, seq_len)
encoder_extra_kwargs: Optional additional arguments to pass to each encoder layer
Returns:
A tuple containing:
- output: Processed features with shape (seq_len, batch_size, d_model)
- key_padding_masks_flatten: Flattened padding masks
- lvl_pos_embed_flatten: Flattened positional embeddings
- level_start_index: Starting indices for each feature level
- spatial_shapes: Spatial dimensions of each feature level
- valid_ratios: Valid ratios for each feature level
"""
assert (
len(src) == self.num_feature_levels
), "must be equal to num_feature_levels"
if src_key_padding_masks is not None:
assert len(src_key_padding_masks) == self.num_feature_levels
if pos is not None:
assert len(pos) == self.num_feature_levels
# Flatten multilevel feats and add level pos embeds
(
src_flatten,
key_padding_masks_flatten,
lvl_pos_embed_flatten,
level_start_index,
valid_ratios,
spatial_shapes,
) = self._prepare_multilevel_features(src, src_key_padding_masks, pos)
reference_points = self.get_reference_points(
spatial_shapes, valid_ratios, device=src_flatten.device
)
output = src_flatten
for layer in self.layers:
layer_kwargs = {}
assert isinstance(layer, TransformerEncoderLayer)
layer_kwargs["memory"] = prompt
layer_kwargs["memory_key_padding_mask"] = prompt_key_padding_mask
layer_kwargs["query_pos"] = lvl_pos_embed_flatten
layer_kwargs["tgt"] = output
layer_kwargs["tgt_key_padding_mask"] = key_padding_masks_flatten
if self.training:
assert self.use_act_checkpoint, "activation ckpt not enabled in encoder"
if encoder_extra_kwargs is not None:
layer_kwargs.update(encoder_extra_kwargs)
output = activation_ckpt_wrapper(layer)(
**layer_kwargs,
act_ckpt_enable=self.training and self.use_act_checkpoint,
)
# return as seq first
return (
output.transpose(0, 1),
(
key_padding_masks_flatten.transpose(0, 1)
if key_padding_masks_flatten is not None
else None
),
lvl_pos_embed_flatten.transpose(0, 1),
level_start_index,
spatial_shapes,
valid_ratios,
)
class TransformerEncoderFusion(TransformerEncoder):
"""
Transformer encoder that fuses text and image features.
This encoder extends TransformerEncoder to handle both text and image features,
with the ability to add pooled text features to image features for better
cross-modal fusion. It supports torch.compile for performance optimization.
Args:
layer: The encoder layer to be stacked multiple times
num_layers: Number of encoder layers to stack
d_model: Model dimension/hidden size
num_feature_levels: Number of feature levels to process
add_pooled_text_to_img_feat: Whether to add pooled text features to image features
pool_text_with_mask: Whether to use the mask when pooling text features
compile_mode: Mode for torch.compile, or None to disable compilation
**kwargs: Additional arguments to pass to the parent class
"""
def __init__(
self,
layer: nn.Module,
num_layers: int,
d_model: int,
num_feature_levels: int,
add_pooled_text_to_img_feat: bool = True,
pool_text_with_mask: bool = False,
compile_mode: Optional[str] = None,
**kwargs,
):
super().__init__(
layer,
num_layers,
d_model,
num_feature_levels,
**kwargs,
)
self.add_pooled_text_to_img_feat = add_pooled_text_to_img_feat
if self.add_pooled_text_to_img_feat:
self.text_pooling_proj = nn.Linear(d_model, d_model)
self.pool_text_with_mask = pool_text_with_mask
if compile_mode is not None:
self.forward = torch.compile(
self.forward, mode=compile_mode, fullgraph=True
)
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
# Not needed here
return None
def forward(
self,
src: List[Tensor],
prompt: Tensor,
src_key_padding_mask: Optional[List[Tensor]] = None,
src_pos: Optional[List[Tensor]] = None,
prompt_key_padding_mask: Optional[Tensor] = None,
prompt_pos: Optional[Tensor] = None,
feat_sizes: Optional[List[int]] = None,
encoder_extra_kwargs: Optional[Dict] = None,
):
# Restore spatial shapes of vision
bs = src[0].shape[1] # seq first
if feat_sizes is not None:
assert len(feat_sizes) == len(src)
if src_key_padding_mask is None:
src_key_padding_mask = [None] * len(src)
for i, (h, w) in enumerate(feat_sizes):
src[i] = src[i].reshape(h, w, bs, -1).permute(2, 3, 0, 1)
src_pos[i] = src_pos[i].reshape(h, w, bs, -1).permute(2, 3, 0, 1)
src_key_padding_mask[i] = (
src_key_padding_mask[i].reshape(h, w, bs).permute(2, 0, 1)
if src_key_padding_mask[i] is not None
else None
)
else:
assert all(
x.dim == 4 for x in src
), "expected list of (bs, c, h, w) tensors"
if self.add_pooled_text_to_img_feat:
# Fusion: Add mean pooled text to image features
pooled_text = pool_text_feat(
prompt, prompt_key_padding_mask, self.pool_text_with_mask
)
pooled_text = self.text_pooling_proj(pooled_text)[
..., None, None
] # prompt is seq first
src = [x.add_(pooled_text) for x in src]
(
out,
key_padding_masks_flatten,
lvl_pos_embed_flatten,
level_start_index,
spatial_shapes,
valid_ratios,
) = super().forward(
src,
src_key_padding_masks=src_key_padding_mask,
pos=src_pos,
prompt=prompt.transpose(0, 1),
prompt_key_padding_mask=prompt_key_padding_mask,
encoder_extra_kwargs=encoder_extra_kwargs,
)
return {
"memory": out,
"padding_mask": key_padding_masks_flatten,
"pos_embed": lvl_pos_embed_flatten,
"memory_text": prompt,
"level_start_index": level_start_index,
"spatial_shapes": spatial_shapes,
"valid_ratios": valid_ratios,
}
def pool_text_feat(prompt, prompt_mask, pool_with_mask):
# prompt has shape (seq, bs, dim)
if not pool_with_mask:
return prompt.mean(dim=0)
# prompt_mask has shape (bs, seq), where False is valid and True is padding
assert prompt_mask.dim() == 2
# is_valid has shape (seq, bs, 1), where 1 is valid and 0 is padding
is_valid = (~prompt_mask).float().permute(1, 0)[..., None]
# num_valid has shape (bs, 1)
num_valid = torch.clamp(torch.sum(is_valid, dim=0), min=1.0)
# mean pool over all the valid tokens
pooled_text = (prompt * is_valid).sum(dim=0) / num_valid
return pooled_text