bellmake's picture
SAM3 Video Segmentation - Clean deployment
14114e8
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
import json
import os
import torch
from PIL import Image
from sam3.model.box_ops import box_xyxy_to_xywh
from sam3.train.masks_ops import rle_encode
from .helpers.mask_overlap_removal import remove_overlapping_masks
from .viz import visualize
def sam3_inference(processor, image_path, text_prompt):
"""Run SAM 3 image inference with text prompts and format the outputs"""
image = Image.open(image_path)
orig_img_w, orig_img_h = image.size
# model inference
inference_state = processor.set_image(image)
inference_state = processor.set_text_prompt(
state=inference_state, prompt=text_prompt
)
# format and assemble outputs
pred_boxes_xyxy = torch.stack(
[
inference_state["boxes"][:, 0] / orig_img_w,
inference_state["boxes"][:, 1] / orig_img_h,
inference_state["boxes"][:, 2] / orig_img_w,
inference_state["boxes"][:, 3] / orig_img_h,
],
dim=-1,
) # normalized in range [0, 1]
pred_boxes_xywh = box_xyxy_to_xywh(pred_boxes_xyxy).tolist()
pred_masks = rle_encode(inference_state["masks"].squeeze(1))
pred_masks = [m["counts"] for m in pred_masks]
outputs = {
"orig_img_h": orig_img_h,
"orig_img_w": orig_img_w,
"pred_boxes": pred_boxes_xywh,
"pred_masks": pred_masks,
"pred_scores": inference_state["scores"].tolist(),
}
return outputs
def call_sam_service(
sam3_processor,
image_path: str,
text_prompt: str,
output_folder_path: str = "sam3_output",
):
"""
Loads an image, sends it with a text prompt to the service,
saves the results, and renders the visualization.
"""
print(f"πŸ“ž Loading image '{image_path}' and sending with prompt '{text_prompt}'...")
text_prompt_for_save_path = (
text_prompt.replace("/", "_") if "/" in text_prompt else text_prompt
)
os.makedirs(
os.path.join(output_folder_path, image_path.replace("/", "-")), exist_ok=True
)
output_json_path = os.path.join(
output_folder_path,
image_path.replace("/", "-"),
rf"{text_prompt_for_save_path}.json",
)
output_image_path = os.path.join(
output_folder_path,
image_path.replace("/", "-"),
rf"{text_prompt_for_save_path}.png",
)
try:
# Send the image and text prompt as a multipart/form-data request
serialized_response = sam3_inference(sam3_processor, image_path, text_prompt)
# 1. Prepare the response dictionary
serialized_response = remove_overlapping_masks(serialized_response)
serialized_response = {
"original_image_path": image_path,
"output_image_path": output_image_path,
**serialized_response,
}
# 2. Reorder predictions by scores (highest to lowest) if scores are available
if "pred_scores" in serialized_response and serialized_response["pred_scores"]:
# Create indices sorted by scores in descending order
score_indices = sorted(
range(len(serialized_response["pred_scores"])),
key=lambda i: serialized_response["pred_scores"][i],
reverse=True,
)
# Reorder all three lists based on the sorted indices
serialized_response["pred_scores"] = [
serialized_response["pred_scores"][i] for i in score_indices
]
serialized_response["pred_boxes"] = [
serialized_response["pred_boxes"][i] for i in score_indices
]
serialized_response["pred_masks"] = [
serialized_response["pred_masks"][i] for i in score_indices
]
# 3. Remove any invalid RLE masks that is too short (shorter than 5 characters)
valid_masks = []
valid_boxes = []
valid_scores = []
for i, rle in enumerate(serialized_response["pred_masks"]):
if len(rle) > 4:
valid_masks.append(rle)
valid_boxes.append(serialized_response["pred_boxes"][i])
valid_scores.append(serialized_response["pred_scores"][i])
serialized_response["pred_masks"] = valid_masks
serialized_response["pred_boxes"] = valid_boxes
serialized_response["pred_scores"] = valid_scores
with open(output_json_path, "w") as f:
json.dump(serialized_response, f, indent=4)
print(f"βœ… Raw JSON response saved to '{output_json_path}'")
# 4. Render and save visualizations on the image and save it in the SAM3 output folder
print("πŸ” Rendering visualizations on the image ...")
viz_image = visualize(serialized_response)
os.makedirs(os.path.dirname(output_image_path), exist_ok=True)
viz_image.save(output_image_path)
print("βœ… Saved visualization at:", output_image_path)
except Exception as e:
print(f"❌ Error calling service: {e}")
return output_json_path