File size: 19,866 Bytes
14114e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved

"""Dataset class for modulated detection"""

import json
import os
import random
import sys
import traceback
from collections import Counter
from dataclasses import dataclass
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union

import torch
import torch.utils.data
import torchvision
from decord import cpu, VideoReader
from iopath.common.file_io import g_pathmgr

from PIL import Image as PILImage
from PIL.Image import DecompressionBombError

from sam3.model.box_ops import box_xywh_to_xyxy
from torchvision.datasets.vision import VisionDataset

from .coco_json_loaders import COCO_FROM_JSON


@dataclass
class InferenceMetadata:
    """Metadata required for postprocessing"""

    # Coco id that corresponds to the "image" for evaluation by the coco evaluator
    # This is used for our own "class agnostic" evaluation
    coco_image_id: int

    # id in the original dataset, such that we can use the original evaluator
    original_image_id: int

    # Original category id (if we want to use the original evaluator)
    original_category_id: int

    # Size of the raw image (height, width)
    original_size: Tuple[int, int]

    # Id of the object in the media
    object_id: int

    # Index of the frame in the media (0 if single image)
    frame_index: int

    # Whether it is for conditioning only, e.g., 0-th frame in TA is for conditioning
    # as we assume GT available in frame 0.
    is_conditioning_only: Optional[bool] = False


@dataclass
class FindQuery:
    query_text: str

    image_id: int

    # In case of a find query, the list of object ids that have to be predicted
    object_ids_output: List[int]

    # This is "instance exhaustivity".
    # true iff all instances are separable and annotated
    # See below the slightly different "pixel exhaustivity"
    is_exhaustive: bool

    # The order in which the queries are processed (only meaningful for video)
    query_processing_order: int = 0

    # Input geometry, initially in denormalized XYXY format. Then
    # 1. converted to normalized CxCyWH by the Normalize transform
    input_bbox: Optional[torch.Tensor] = None
    input_bbox_label: Optional[torch.Tensor] = None

    # Only for the PVS task
    input_points: Optional[torch.Tensor] = None

    semantic_target: Optional[torch.Tensor] = None

    # pixel exhaustivity: true iff the union of all segments (including crowds)
    # covers every pixel belonging to the target class
    # Note that instance_exhaustive implies pixel_exhaustive
    is_pixel_exhaustive: Optional[bool] = None


@dataclass
class FindQueryLoaded(FindQuery):
    # Must have default value since FindQuery has entries with default values
    inference_metadata: Optional[InferenceMetadata] = None


@dataclass
class Object:
    # Initially in denormalized XYXY format, gets converted to normalized CxCyWH by the Normalize transform
    bbox: torch.Tensor
    area: float

    # Id of the object in the media
    object_id: Optional[int] = -1

    # Index of the frame in the media (0 if single image)
    frame_index: Optional[int] = -1

    segment: Optional[Union[torch.Tensor, dict]] = None  # RLE dict or binary mask

    is_crowd: bool = False

    source: Optional[str] = None


@dataclass
class Image:
    data: Union[torch.Tensor, PILImage.Image]
    objects: List[Object]
    size: Tuple[int, int]  # (height, width)

    # For blurring augmentation
    blurring_mask: Optional[Dict[str, Any]] = None


@dataclass
class Datapoint:
    """Refers to an image/video and all its annotations"""

    find_queries: List[FindQueryLoaded]
    images: List[Image]
    raw_images: Optional[List[PILImage.Image]] = None


class CustomCocoDetectionAPI(VisionDataset):
    """`MS Coco Detection <https://cocodataset.org/#detection-2016>`_ Dataset.

    Args:
        root (string): Root directory where images are downloaded to.
        annFile (string): Path to json annotation file.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.ToTensor``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        transforms (callable, optional): A function/transform that takes input sample and its target as entry
            and returns a transformed version.
    """

    def __init__(
        self,
        root: str,
        annFile: str,
        load_segmentation: bool,
        fix_fname: bool = False,
        training: bool = True,
        blurring_masks_path: Optional[str] = None,
        use_caching: bool = True,
        zstd_dict_path=None,
        filter_query=None,
        coco_json_loader: Callable = COCO_FROM_JSON,
        limit_ids: int = None,
    ) -> None:
        super().__init__(root)

        self.annFile = annFile
        self.use_caching = use_caching
        self.zstd_dict_path = zstd_dict_path

        self.curr_epoch = 0  # Used in case data loader behavior changes across epochs
        self.load_segmentation = load_segmentation
        self.fix_fname = fix_fname
        self.filter_query = filter_query

        self.coco = None
        self.coco_json_loader = coco_json_loader
        self.limit_ids = limit_ids
        self.set_sharded_annotation_file(0)
        self.training = training
        self.blurring_masks_path = blurring_masks_path

    def _load_images(
        self, datapoint_id: int, img_ids_to_load: Optional[Set[int]] = None
    ) -> Tuple[List[Tuple[int, PILImage.Image]], List[Dict[str, Any]]]:
        all_images = []
        all_img_metadata = []
        for current_meta in self.coco.loadImagesFromDatapoint(datapoint_id):
            img_id = current_meta["id"]
            if img_ids_to_load is not None and img_id not in img_ids_to_load:
                continue
            if self.fix_fname:
                current_meta["file_name"] = current_meta["file_name"].split("/")[-1]
            path = current_meta["file_name"]
            if self.blurring_masks_path is not None:
                mask_fname = os.path.basename(path).replace(".jpg", "-mask.json")
                mask_path = os.path.join(self.blurring_masks_path, mask_fname)
                if os.path.exists(mask_path):
                    with open(mask_path, "r") as fopen:
                        current_meta["blurring_mask"] = json.load(fopen)

            all_img_metadata.append(current_meta)
            path = os.path.join(self.root, path)
            try:
                if ".mp4" in path and path[-4:] == ".mp4":
                    # Going to load a video frame
                    video_path, frame = path.split("@")
                    video = VideoReader(video_path, ctx=cpu(0))
                    # Convert to PIL image
                    all_images.append(
                        (
                            img_id,
                            torchvision.transforms.ToPILImage()(
                                video[int(frame)].asnumpy()
                            ),
                        )
                    )
                else:
                    with g_pathmgr.open(path, "rb") as fopen:
                        all_images.append((img_id, PILImage.open(fopen).convert("RGB")))
            except FileNotFoundError as e:
                print(f"File not found: {path} from dataset: {self.annFile}")
                raise e

        return all_images, all_img_metadata

    def set_curr_epoch(self, epoch: int):
        self.curr_epoch = epoch

    def set_epoch(self, epoch: int):
        pass

    def set_sharded_annotation_file(self, data_epoch: int):
        if self.coco is not None:
            return

        assert g_pathmgr.isfile(
            self.annFile
        ), f"please provide valid annotation file. Missing: {self.annFile}"
        annFile = g_pathmgr.get_local_path(self.annFile)

        if self.coco is not None:
            del self.coco

        self.coco = self.coco_json_loader(annFile)
        # Use a torch tensor here to optimize memory usage when using several dataloaders
        ids_list = list(sorted(self.coco.getDatapointIds()))
        if self.limit_ids is not None:
            local_random = random.Random(len(ids_list))
            local_random.shuffle(ids_list)
            ids_list = ids_list[: self.limit_ids]
        self.ids = torch.as_tensor(ids_list, dtype=torch.long)

    def __getitem__(self, index: int) -> Datapoint:
        return self._load_datapoint(index)

    def _load_datapoint(self, index: int) -> Datapoint:
        """A separate method for easy overriding in subclasses."""
        id = self.ids[index].item()
        pil_images, img_metadata = self._load_images(id)
        queries, annotations = self.coco.loadQueriesAndAnnotationsFromDatapoint(id)
        return self.load_queries(pil_images, annotations, queries, img_metadata)

    def load_queries(self, pil_images, annotations, queries, img_metadata):
        """Transform the raw image and queries into a Datapoint sample."""
        images: List[Image] = []
        id2index_img = {}
        id2index_obj = {}
        id2index_find_query = {}
        id2imsize = {}
        assert len(pil_images) == len(img_metadata)
        for i in range(len(pil_images)):
            w, h = pil_images[i][1].size
            blurring_mask = None
            if "blurring_mask" in img_metadata[i]:
                blurring_mask = img_metadata[i]["blurring_mask"]
            images.append(
                Image(
                    data=pil_images[i][1],
                    objects=[],
                    size=(h, w),
                    blurring_mask=blurring_mask,
                )
            )
            id2index_img[pil_images[i][0]] = i
            id2imsize[pil_images[i][0]] = (h, w)

        for annotation in annotations:
            image_id = id2index_img[annotation["image_id"]]
            bbox = box_xywh_to_xyxy(torch.as_tensor(annotation["bbox"])).view(1, 4)
            h, w = id2imsize[annotation["image_id"]]
            bbox[:, 0::2].mul_(w).clamp_(min=0, max=w)
            bbox[:, 1::2].mul_(h).clamp_(min=0, max=h)
            segment = None
            if self.load_segmentation and "segmentation" in annotation:
                # We're not decoding the RLE here, a transform will do it lazily later
                segment = annotation["segmentation"]
            images[image_id].objects.append(
                Object(
                    bbox=bbox[0],
                    area=annotation["area"],
                    object_id=(
                        annotation["object_id"] if "object_id" in annotation else -1
                    ),
                    frame_index=(
                        annotation["frame_index"] if "frame_index" in annotation else -1
                    ),
                    segment=segment,
                    is_crowd=(
                        annotation["is_crowd"] if "is_crowd" in annotation else None
                    ),
                    source=annotation["source"] if "source" in annotation else "",
                )
            )
            id2index_obj[annotation["id"]] = len(images[image_id].objects) - 1

        find_queries = []
        stage2num_queries = Counter()
        for i, query in enumerate(queries):
            stage2num_queries[query["query_processing_order"]] += 1
            id2index_find_query[query["id"]] = i

        # Sanity check: all the stages should have the same number of queries
        if len(stage2num_queries) == 0:
            num_queries_per_stage = 0
        else:
            num_queries_per_stage = stage2num_queries.most_common(1)[0][1]
        for stage, num_queries in stage2num_queries.items():
            assert (
                num_queries == num_queries_per_stage
            ), f"Number of queries in stage {stage} is {num_queries}, expected {num_queries_per_stage}"

        for query_id, query in enumerate(queries):
            h, w = id2imsize[query["image_id"]]
            if (
                "input_box" in query
                and query["input_box"] is not None
                and len(query["input_box"]) > 0
            ):
                bbox = box_xywh_to_xyxy(torch.as_tensor(query["input_box"])).view(-1, 4)
                bbox[:, 0::2].mul_(w).clamp_(min=0, max=w)
                bbox[:, 1::2].mul_(h).clamp_(min=0, max=h)
                if "input_box_label" in query and query["input_box_label"] is not None:
                    bbox_label = torch.as_tensor(
                        query["input_box_label"], dtype=torch.long
                    ).view(-1)
                    assert len(bbox_label) == len(bbox)
                else:
                    # assume the boxes are positives
                    bbox_label = torch.ones(len(bbox), dtype=torch.long)
            else:
                bbox = None
                bbox_label = None

            if "input_points" in query and query["input_points"] is not None:
                points = torch.as_tensor(query["input_points"]).view(1, -1, 3)
                points[:, :, 0:1].mul_(w).clamp_(min=0, max=w)
                points[:, :, 1:2].mul_(h).clamp_(min=0, max=h)
            else:
                points = None

            try:
                original_image_id = int(
                    img_metadata[id2index_img[query["image_id"]]]["original_img_id"]
                )
            except ValueError:
                original_image_id = -1

            try:
                img_metadata_query = img_metadata[id2index_img[query["image_id"]]]
                coco_image_id = (
                    int(img_metadata_query["coco_img_id"])
                    if "coco_img_id" in img_metadata_query
                    else query["id"]
                )
            except KeyError:
                coco_image_id = -1

            try:
                original_category_id = int(query["original_cat_id"])
            except (ValueError, KeyError):
                original_category_id = -1

            # For evaluation, we associate the ids of the object to be tracked to the query
            if query["object_ids_output"]:
                obj_id = query["object_ids_output"][0]
                obj_idx = id2index_obj[obj_id]
                image_idx = id2index_img[query["image_id"]]
                object_id = images[image_idx].objects[obj_idx].object_id
                frame_index = images[image_idx].objects[obj_idx].frame_index
            else:
                object_id = -1
                frame_index = -1

            find_queries.append(
                FindQueryLoaded(
                    # id=query["id"],
                    # query_type=qtype,
                    query_text=(
                        query["query_text"] if query["query_text"] is not None else ""
                    ),
                    image_id=id2index_img[query["image_id"]],
                    input_bbox=bbox,
                    input_bbox_label=bbox_label,
                    input_points=points,
                    object_ids_output=[
                        id2index_obj[obj_id] for obj_id in query["object_ids_output"]
                    ],
                    is_exhaustive=query["is_exhaustive"],
                    is_pixel_exhaustive=(
                        query["is_pixel_exhaustive"]
                        if "is_pixel_exhaustive" in query
                        else (
                            query["is_exhaustive"] if query["is_exhaustive"] else None
                        )
                    ),
                    query_processing_order=query["query_processing_order"],
                    inference_metadata=InferenceMetadata(
                        coco_image_id=-1 if self.training else coco_image_id,
                        original_image_id=(-1 if self.training else original_image_id),
                        frame_index=frame_index,
                        original_category_id=original_category_id,
                        original_size=(h, w),
                        object_id=object_id,
                    ),
                )
            )

        return Datapoint(
            find_queries=find_queries,
            images=images,
            raw_images=[p[1] for p in pil_images],
        )

    def __len__(self) -> int:
        return len(self.ids)


class Sam3ImageDataset(CustomCocoDetectionAPI):
    def __init__(
        self,
        img_folder,
        ann_file,
        transforms,
        max_ann_per_img: int,
        multiplier: int,
        training: bool,
        load_segmentation: bool = False,
        max_train_queries: int = 81,
        max_val_queries: int = 300,
        fix_fname: bool = False,
        is_sharded_annotation_dir: bool = False,
        blurring_masks_path: Optional[str] = None,
        use_caching: bool = True,
        zstd_dict_path=None,
        filter_query=None,
        coco_json_loader: Callable = COCO_FROM_JSON,
        limit_ids: int = None,
    ):
        super(Sam3ImageDataset, self).__init__(
            img_folder,
            ann_file,
            fix_fname=fix_fname,
            load_segmentation=load_segmentation,
            training=training,
            blurring_masks_path=blurring_masks_path,
            use_caching=use_caching,
            zstd_dict_path=zstd_dict_path,
            filter_query=filter_query,
            coco_json_loader=coco_json_loader,
            limit_ids=limit_ids,
        )

        self._transforms = transforms
        self.training = training
        self.max_ann_per_img = max_ann_per_img
        self.max_train_queries = max_train_queries
        self.max_val_queries = max_val_queries

        self.repeat_factors = torch.ones(len(self.ids), dtype=torch.float32)

        self.repeat_factors *= multiplier
        print(f"Raw dataset length = {len(self.ids)}")

        self._MAX_RETRIES = 100

    def __getitem__(self, idx):
        return self.__orig_getitem__(idx)

    def __orig_getitem__(self, idx):
        for _ in range(self._MAX_RETRIES):
            try:
                datapoint = super(Sam3ImageDataset, self).__getitem__(idx)

                # This can be done better by filtering the offending find queries
                # However, this requires care:
                # - Delete any find/get query that may depend on the deleted one
                # - Re-compute the indexes in the pointers to account for the deleted finds
                for q in datapoint.find_queries:
                    if len(q.object_ids_output) > self.max_ann_per_img:
                        raise DecompressionBombError(
                            f"Too many outputs ({len(q.object_ids_output)})"
                        )

                max_queries = (
                    self.max_train_queries if self.training else self.max_val_queries
                )

                if len(datapoint.find_queries) > max_queries:
                    raise DecompressionBombError(
                        f"Too many find queries ({len(datapoint.find_queries)})"
                    )

                if len(datapoint.find_queries) == 0:
                    raise DecompressionBombError("No find queries")
                for transform in self._transforms:
                    datapoint = transform(datapoint, epoch=self.curr_epoch)

                break
            except (DecompressionBombError, OSError, ValueError) as error:
                sys.stderr.write(f"ERROR: got loading error on datapoint {idx}\n")
                sys.stderr.write(f"Exception: {error}\n")
                sys.stderr.write(traceback.format_exc())
                idx = (idx + 1) % len(self)
        else:
            raise RuntimeError(
                f"Failed {self._MAX_RETRIES} times trying to load an image."
            )

        return datapoint