File size: 8,831 Bytes
14114e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved

"""
Text Tokenizer.

Copied and lightly adapted from VE repo, which in turn copied
from open_clip and openAI CLIP.
"""

import gzip
import html
import io
import os
import string
from functools import lru_cache
from typing import List, Optional, Union

import ftfy
import regex as re
import torch
from iopath.common.file_io import g_pathmgr


# https://stackoverflow.com/q/62691279
os.environ["TOKENIZERS_PARALLELISM"] = "false"
DEFAULT_CONTEXT_LENGTH = 77


@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a significant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = (
        list(range(ord("!"), ord("~") + 1))
        + list(range(ord("¡"), ord("¬") + 1))
        + list(range(ord("®"), ord("ÿ") + 1))
    )
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8 + n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))


def get_pairs(word):
    """Return set of symbol pairs in a word.
    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs


def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


def whitespace_clean(text):
    text = re.sub(r"\s+", " ", text)
    text = text.strip()
    return text


def _clean_canonicalize(x):
    # basic, remove whitespace, remove punctuation, lower case
    return canonicalize_text(basic_clean(x))


def _clean_lower(x):
    # basic, remove whitespace, lower case
    return whitespace_clean(basic_clean(x)).lower()


def _clean_whitespace(x):
    # basic, remove whitespace
    return whitespace_clean(basic_clean(x))


def get_clean_fn(type: str):
    if type == "canonicalize":
        return _clean_canonicalize
    elif type == "lower":
        return _clean_lower
    elif type == "whitespace":
        return _clean_whitespace
    else:
        assert False, f"Invalid clean function ({type})."


def canonicalize_text(text, *, keep_punctuation_exact_string=None):
    """Returns canonicalized `text` (lowercase and punctuation removed).
    From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
    Args:
      text: string to be canonicalized.
      keep_punctuation_exact_string: If provided, then this exact string kept.
        For example providing '{}' will keep any occurrences of '{}' (but will
        still remove '{' and '}' that appear separately).
    """
    text = text.replace("_", " ")
    if keep_punctuation_exact_string:
        text = keep_punctuation_exact_string.join(
            part.translate(str.maketrans("", "", string.punctuation))
            for part in text.split(keep_punctuation_exact_string)
        )
    else:
        text = text.translate(str.maketrans("", "", string.punctuation))
    text = text.lower()
    text = re.sub(r"\s+", " ", text)
    return text.strip()


class SimpleTokenizer(object):
    def __init__(
        self,
        bpe_path: Union[str, os.PathLike],
        additional_special_tokens: Optional[List[str]] = None,
        context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
        clean: str = "lower",
    ):
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
        with g_pathmgr.open(bpe_path, "rb") as fh:
            bpe_bytes = io.BytesIO(fh.read())
            merges = gzip.open(bpe_bytes).read().decode("utf-8").split("\n")
        # merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
        merges = merges[1 : 49152 - 256 - 2 + 1]
        merges = [tuple(merge.split()) for merge in merges]
        vocab = list(bytes_to_unicode().values())
        vocab = vocab + [v + "</w>" for v in vocab]
        for merge in merges:
            vocab.append("".join(merge))
        special_tokens = ["<start_of_text>", "<end_of_text>"]
        if additional_special_tokens:
            special_tokens += additional_special_tokens
        vocab.extend(special_tokens)
        self.encoder = dict(zip(vocab, range(len(vocab))))
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {t: t for t in special_tokens}
        special = "|".join(special_tokens)
        self.pat = re.compile(
            special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
            re.IGNORECASE,
        )
        self.vocab_size = len(self.encoder)
        self.all_special_ids = [self.encoder[t] for t in special_tokens]
        self.sot_token_id = self.all_special_ids[0]
        self.eot_token_id = self.all_special_ids[1]
        self.context_length = context_length
        self.clean_fn = get_clean_fn(clean)

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token[:-1]) + (token[-1] + "</w>",)
        pairs = get_pairs(word)
        if not pairs:
            return token + "</w>"
        while True:
            bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break
                if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
                    new_word.append(first + second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = " ".join(word)
        self.cache[token] = word
        return word

    def encode(self, text):
        bpe_tokens = []
        text = self.clean_fn(text)
        for token in re.findall(self.pat, text):
            token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
            bpe_tokens.extend(
                self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
            )
        return bpe_tokens

    def decode(self, tokens):
        text = "".join([self.decoder[token] for token in tokens])
        text = (
            bytearray([self.byte_decoder[c] for c in text])
            .decode("utf-8", errors="replace")
            .replace("</w>", " ")
        )
        return text

    def __call__(
        self, texts: Union[str, List[str]], context_length: Optional[int] = None
    ) -> torch.LongTensor:
        """Returns the tokenized representation of given input string(s)
        Parameters
        ----------
        texts : Union[str, List[str]]
            An input string or a list of input strings to tokenize
        context_length : int
            The context length to use; all CLIP models use 77 as the context length
        Returns
        -------
        A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
        """
        if isinstance(texts, str):
            texts = [texts]
        context_length = context_length or self.context_length
        assert context_length, "Please set a valid context length"
        all_tokens = [
            [self.sot_token_id] + self.encode(text) + [self.eot_token_id]
            for text in texts
        ]
        result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
        for i, tokens in enumerate(all_tokens):
            if len(tokens) > context_length:
                tokens = tokens[:context_length]  # Truncate
                tokens[-1] = self.eot_token_id
            result[i, : len(tokens)] = torch.tensor(tokens)
        return result