File size: 11,259 Bytes
14114e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved

from collections import OrderedDict
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint

from .model_misc import LayerScale


class ResidualAttentionBlock(nn.Module):
    def __init__(
        self,
        d_model: int,
        n_head: int,
        mlp_ratio: float = 4.0,
        ls_init_value: Optional[float] = None,
        act_layer: Callable[[], nn.Module] = nn.GELU,
        norm_layer: Callable[[int], nn.Module] = nn.LayerNorm,
    ):
        super().__init__()
        # Attention
        self.attn = nn.MultiheadAttention(d_model, n_head, batch_first=True)

        # LayerNorm, LayerScale
        self.ln_1 = norm_layer(d_model)
        self.ln_2 = norm_layer(d_model)

        self.ls_1 = (
            LayerScale(d_model, ls_init_value)
            if ls_init_value is not None
            else nn.Identity()
        )
        self.ls_2 = (
            LayerScale(d_model, ls_init_value)
            if ls_init_value is not None
            else nn.Identity()
        )

        # MLP
        mlp_width = int(d_model * mlp_ratio)
        self.mlp = nn.Sequential(
            OrderedDict(
                [
                    ("c_fc", nn.Linear(d_model, mlp_width)),
                    ("gelu", act_layer()),
                    ("c_proj", nn.Linear(mlp_width, d_model)),
                ]
            )
        )

    def attention(
        self,
        q_x: torch.Tensor,
        k_x: Optional[torch.Tensor] = None,
        v_x: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        k_x = k_x if k_x is not None else q_x
        v_x = v_x if v_x is not None else q_x
        if attn_mask is not None:
            # Leave boolean masks as is
            if not attn_mask.dtype == torch.bool:
                attn_mask = attn_mask.to(q_x.dtype)

        return self.attn(q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask)[0]

    def forward(
        self,
        q_x: torch.Tensor,
        k_x: Optional[torch.Tensor] = None,
        v_x: Optional[torch.Tensor] = None,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        k_x = (
            self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
        )
        v_x = (
            self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
        )
        x = q_x + self.ls_1(
            self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)
        )
        x = x + self.ls_2(self.mlp(self.ln_2(x)))
        return x


class Transformer(nn.Module):
    def __init__(
        self,
        width: int,
        layers: int,
        heads: int,
        mlp_ratio: float = 4.0,
        ls_init_value: Optional[float] = None,
        act_layer: Callable[[], nn.Module] = nn.GELU,
        norm_layer: Callable[[int], nn.Module] = nn.LayerNorm,
        compile_mode: Optional[str] = None,
        use_act_checkpoint: bool = False,
    ):
        super().__init__()
        self.width = width
        self.layers = layers
        self.grad_checkpointing = use_act_checkpoint
        self.resblocks = nn.ModuleList(
            [
                ResidualAttentionBlock(
                    width,
                    heads,
                    mlp_ratio,
                    ls_init_value=ls_init_value,
                    act_layer=act_layer,
                    norm_layer=norm_layer,
                )
                for _ in range(layers)
            ]
        )

        if compile_mode is not None:
            self.forward = torch.compile(
                self.forward, mode=compile_mode, fullgraph=True
            )
            if self.grad_checkpointing:
                torch._dynamo.config.optimize_ddp = False

    def forward(
        self,
        x: torch.Tensor,
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        for _, r in enumerate(self.resblocks):
            if (
                self.grad_checkpointing
                and not torch.jit.is_scripting()
                and self.training
            ):
                x = checkpoint(r, x, None, None, attn_mask, use_reentrant=False)
            else:
                x = r(
                    x,
                    attn_mask=attn_mask,
                )
        return x


def text_global_pool(
    x: torch.Tensor, text: Optional[torch.Tensor] = None, pool_type: str = "argmax"
) -> Tuple[torch.Tensor, torch.Tensor]:
    if pool_type == "first":
        pooled, tokens = x[:, 0], x[:, 1:]
    elif pool_type == "last":
        pooled, tokens = x[:, -1], x[:, :-1]
    elif pool_type == "argmax":
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        assert text is not None
        pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
    else:
        pooled = tokens = x
    return pooled, tokens


class TextTransformer(nn.Module):
    def __init__(
        self,
        context_length: int = 77,
        vocab_size: int = 49408,
        width: int = 512,
        heads: int = 8,
        layers: int = 12,
        mlp_ratio: float = 4.0,
        ls_init_value: Optional[float] = None,
        output_dim: int = 512,
        no_causal_mask: bool = False,
        pool_type: str = "none",  # no pooling
        proj_bias: bool = False,
        act_layer: Callable = nn.GELU,
        norm_layer: Callable = nn.LayerNorm,
        output_tokens: bool = False,
        use_ln_post: bool = True,
        compile_mode: Optional[str] = None,
        use_act_checkpoint: bool = False,
    ):
        super().__init__()
        assert pool_type in ("first", "last", "argmax", "none")
        self.output_tokens = output_tokens
        self.num_pos = self.context_length = context_length
        self.vocab_size = vocab_size
        self.width = width
        self.output_dim = output_dim
        self.heads = heads
        self.pool_type = pool_type

        self.token_embedding = nn.Embedding(self.vocab_size, width)
        self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width))
        self.transformer = Transformer(
            width=width,
            layers=layers,
            heads=heads,
            mlp_ratio=mlp_ratio,
            ls_init_value=ls_init_value,
            act_layer=act_layer,
            norm_layer=norm_layer,
            compile_mode=compile_mode,
            use_act_checkpoint=use_act_checkpoint,
        )
        self.ln_final = norm_layer(width) if use_ln_post else nn.Identity()
        if no_causal_mask:
            self.attn_mask = None
        else:
            self.register_buffer(
                "attn_mask", self.build_causal_mask(), persistent=False
            )
        if proj_bias:
            self.text_projection = nn.Linear(width, output_dim)
        else:
            self.text_projection = nn.Parameter(torch.empty(width, output_dim))

    def build_causal_mask(self) -> torch.Tensor:
        # lazily create causal attention mask, with full attention between the tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.num_pos, self.num_pos)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def forward(
        self, text: torch.Tensor
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        seq_len = text.shape[1]
        x = self.token_embedding(text)  # [batch_size, n_ctx, d_model]

        attn_mask = self.attn_mask
        if attn_mask is not None:
            attn_mask = attn_mask[:seq_len, :seq_len]

        x = x + self.positional_embedding[:seq_len]
        x = self.transformer(x, attn_mask=attn_mask)

        x = self.ln_final(x)
        pooled, tokens = text_global_pool(x, text, pool_type=self.pool_type)
        if self.text_projection is not None:
            if isinstance(self.text_projection, nn.Linear):
                pooled = self.text_projection(pooled)
            else:
                pooled = pooled @ self.text_projection
        if self.output_tokens:
            return pooled, tokens
        return pooled


class VETextEncoder(nn.Module):
    def __init__(
        self,
        d_model: int,
        tokenizer: Callable,
        width: int = 1024,
        heads: int = 16,
        layers: int = 24,
        context_length: int = 32,
        vocab_size: int = 49408,
        use_ln_post: bool = True,
        compile_mode: Optional[str] = None,
        use_act_checkpoint: bool = True,
    ):
        super().__init__()
        self.context_length = context_length
        self.use_ln_post = use_ln_post
        self.tokenizer = tokenizer

        self.encoder = TextTransformer(
            context_length=self.context_length,
            vocab_size=vocab_size,
            width=width,
            heads=heads,
            layers=layers,
            # we want the tokens, not just the pooled output
            output_tokens=True,
            use_ln_post=use_ln_post,
            compile_mode=compile_mode,
            use_act_checkpoint=use_act_checkpoint,
        )
        self.resizer = nn.Linear(self.encoder.width, d_model)

    def forward(
        self,
        text: Union[List[str], Tuple[torch.Tensor, torch.Tensor, dict]],
        input_boxes: Optional[List] = None,
        device: torch.device = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        if isinstance(text[0], str):
            # no use case for this
            assert input_boxes is None or len(input_boxes) == 0, "not supported"

            # Encode the text
            tokenized = self.tokenizer(text, context_length=self.context_length).to(
                device
            )  # [b, seq_len]
            text_attention_mask = (tokenized != 0).bool()

            # manually embed the tokens
            inputs_embeds = self.encoder.token_embedding(
                tokenized
            )  # [b, seq_len, d=1024]
            _, text_memory = self.encoder(tokenized)  # [b, seq_len, d=1024]

            assert text_memory.shape[1] == inputs_embeds.shape[1]
            # Invert attention mask because its the opposite in pytorch transformer
            text_attention_mask = text_attention_mask.ne(1)
            # Transpose memory because pytorch's attention expects sequence first
            text_memory = text_memory.transpose(0, 1)
            # Resize the encoder hidden states to be of the same d_model as the decoder
            text_memory_resized = self.resizer(text_memory)
        else:
            # The text is already encoded, use as is.
            text_attention_mask, text_memory_resized, tokenized = text
            inputs_embeds = tokenized["inputs_embeds"]
            assert (
                input_boxes is None or len(input_boxes) == 0
            ), "Can't replace boxes in text if it's already encoded"

        # Note that the input_embeds are returned in pytorch's convention (sequence first)
        return (
            text_attention_mask,
            text_memory_resized,
            inputs_embeds.transpose(0, 1),
        )